12.3: The Dot Product

Some Formulas and Properties to Remember:

The Dot product $\mathbf{v} \cdot \mathbf{w}$ of TWO VECTORS

$$
\mathbf{v}=\langle a, b, c\rangle, \quad\langle d, e, f\rangle
$$

is the SCALAR defined by

$$
\mathbf{v} \cdot \mathbf{w}=a d+b e+c f
$$

In other words, you multiply each corresponding component together, and then you add them up.

Properties of the Dot Product

1. $\mathbf{0} \cdot \mathrm{v}=\mathrm{v} \cdot \mathbf{0}=\mathbf{0}$
2. Commutativity: $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
3. Pulling out scalars: $(\lambda \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(\lambda \mathbf{w})=\lambda(\mathbf{v} \cdot \mathbf{w})$
4. Distributive Law: $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$ $(\mathbf{v}+\mathbf{w}) \cdot \mathbf{u}=\mathbf{v} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{u}$
5. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$

ALTERNATIVELY! We have another expression for the dot product:

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos (\theta)
$$

where θ is the angle between the two vectors. So we get that the angle between two (non-zero) vectors is:

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

Important Notes:

1. The dot product is commutative, so ORDER DOES NOT MATTER. I.e. $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
2. The dot product takes two VECTORS as input and returns a SCALAR. So things like $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$ are generally impossible.
3. REMEMBER THIS FACT: For any non-zero vectors \mathbf{v} and $\mathbf{w}, \mathbf{v} \cdot \mathbf{w}=\mathbf{0} \Leftrightarrow$ The angle θ between \mathbf{v} and \mathbf{w} is 90° or $\frac{\pi}{2}$ radians. In other words, the dot product of two non-zero vectors is 0 if and only if the vectors are perpendicular to each other.

12.4: The Cross Product

The Cross Product $\mathbf{v} \times \mathbf{w}$ of TWO VECTORS

$$
\mathbf{v}=\langle a, b, c\rangle, \quad\langle d, e, f\rangle
$$

is the VECTOR defined by:

$$
\begin{aligned}
\mathbf{v} \times \mathbf{w} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a & b & c \\
d & e & f
\end{array}\right|=i\left|\begin{array}{cc}
b & c \\
e & f
\end{array}\right|-j\left|\begin{array}{cc}
a & c \\
d & f
\end{array}\right|+k\left|\begin{array}{cc}
a & b \\
d & e
\end{array}\right| \\
& =(b f-c e) \mathbf{i}-(a f-c d) \mathbf{j}+(a e-b d) \mathbf{k}=\langle b f-c e, c d-a f, a e-b d\rangle
\end{aligned}
$$

Some Formulas and Properties to Remember:

Properties of the Cross Product

1. $\mathbf{v} \times \mathbf{v}=\mathbf{0}$
2. ANTI-Commutativity: $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$
3. Pulling out scalars: $(\lambda \mathbf{v}) \times \mathbf{w}=\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w})$
4. Distributive Law: $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$ $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$
5. $\mathbf{v} \times \mathbf{w}=0$ IF AND ONLY IF $\mathbf{v}=\lambda \mathbf{w}$ for some scalar λ OR \mathbf{v} or \mathbf{w} are $\mathbf{0}$

Geometric Description of Cross Product

The cross product is the unique vector following three properties

1. It is orthogonal to \mathbf{v} and \mathbf{w}
2. $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\theta)(\theta$ is the angle between the two vectors and $0 \leq \theta \leq \pi)$
3. The vectors $\{\mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w}\}$ form a right-handed system

NOTE: The dot product has a similar formula, but with cosine instead of sine. DO NOT GET THESE FORMULAS CONFUSED.

What is a right handed system?
Let's say $\mathbf{u}=\mathbf{v} \times \mathbf{w}$. Then look at the (smaller) angle between \mathbf{v} and \mathbf{w}. If you can get from \mathbf{v} to \mathbf{w} counter-clockwise, then the vector \mathbf{u} points towards you. If you can get from \mathbf{v} to \mathbf{w} clockwise, then the vector \mathbf{u} points away from you. Then the three vectors form what's called a right-handed system.

Important Notes:

1. The cross product is anti-commutative, so ORDER MATTERS.

In other words $\mathbf{v} \times \mathbf{w} \neq \mathbf{w} \times \mathbf{v}$. Instead, $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$
2. The dot product takes two VECTORS as input and returns a VECTOR. So we can do $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
3. We can ALSO find the triple product: $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$, but we CANNOT do this: $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \times(\mathbf{v} \cdot \mathbf{w})$ because when you distribute, you end up trying to cross two scalars and we CANNOT do this: $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$, because then you would be trying to cross a scalar with a vector

