Chapter 13: Vector Valued Functions, and Calculus of Vector Valued Functions

THis chapterfocuses on VECTOR-VALUED FUNCTIONS that take in one value (t), and outputs a VECTOR/VECTOR FUNCTION, $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$

Section 13.1: Vector Parametrizations

Two ways given to parametrize a curve:

1. Set one variable to t, and make all other functions into functions of t (NOTE: If you have functions with square roots, then you will likely have TWO parametrizations). See exercise 21 in section 13.1
2. Use trig functions. Example: $x^{2}+y^{2}=16$ and $y^{2}-x^{2}=z-1$, set $x=4 \cos t$ and $y=4 \sin t$, and solve for z in the second equation

13.2: Calculus of Vector-valued functions

For vector valued functions, a lot of the calculus carries over from single variable calculus to multivariable calculus. You're basically doing the same things, only multiple times. So let's say:

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad \mathbf{r}_{1}(t)=\left\langle x_{1}(t), y_{1}(t), z_{1}(t)\right\rangle, \quad \mathbf{r}_{2}(t)=\left\langle x_{2}(t), y_{2}(t), z_{2}(t)\right\rangle
$$

And $f(t)$ is a SINGLE VARIABLE SCALAR FUNCTION.

Rule	Vector Valued Version
Derivative	$\mathbf{r}^{\prime}(x)=\lim _{t \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$
Integral	$\int \mathbf{r}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int z(t) d t\right\rangle$
Product rule	$(f(t) \mathbf{r}(t))^{\prime}=f^{\prime}(t) \mathbf{r}(t)+f(t) \mathbf{r}^{\prime}(t)$
DOT product rule	$\left(\mathbf{r}_{\mathbf{1}}(t) \cdot \mathbf{r}_{\mathbf{2}}(t)\right)^{\prime}=\mathbf{r}_{\mathbf{1}}{ }^{\prime}(t) \cdot \mathbf{r}_{\mathbf{2}}(t)+\mathbf{r}_{\mathbf{1}}(t) \cdot \mathbf{r}_{\mathbf{2}}{ }^{\prime}(t)$
CROSS product rule	$\left(\mathbf{r}_{\mathbf{1}}(t) \times \mathbf{r}_{\mathbf{2}}(t)\right)^{\prime}=\mathbf{r}_{\mathbf{1}}(t) \times \mathbf{r}_{\mathbf{2}}(t)+\mathbf{r}_{\mathbf{1}}(t) \times \mathbf{r}_{\mathbf{2}}{ }^{\prime}(t)$
Chain rule	$(\mathbf{r}(f(t)))^{\prime}=\mathbf{r}^{\prime}(f(t)) f^{\prime}(t)$

13.3: Arc Length Parametrization:

The length of a path for $a \leq t \leq b$ of $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is:

$$
\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)+y^{\prime}(t)+z^{\prime}(t)} d t
$$

13.5: Motion in Three Space

Given a parametrization $\mathbf{r}(t)$ that traces out a path, we have that the velocity $\mathbf{v}(t)$, acceleration $\mathbf{a}(t)$, and speed $s(t)$ (speed is a single variable function of t) is defined by:

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t) \quad \mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t) \quad s(t)=\left\|\mathbf{r}^{\prime}(t)\right\|
$$

Given a parametrization for the ACCELERATION $\mathbf{a}(t)$ that gives you the acceleration at time t, we have that the velocity $\mathbf{v}(t)$, position $\mathbf{r}(t)$, and speed $s(t)$ (speed is a single variable function of t) is defined by:

$$
\mathbf{v}(t)=\int \mathbf{a}(t)+\left\langle c_{1}, c_{2}, c_{3}\right\rangle \quad \mathbf{r}(t)=\int \mathbf{v}(t)+\left\langle k_{1}, k_{2}, k_{3}\right\rangle \quad s(t)=\|\mathbf{v}(t)\|
$$

Where $c_{1}, c_{2}, c_{3}, k_{1}, k_{2}, k_{3}$ are all constants of integration. You should know what these are and why you need them when integrating.

And we also have Newton's Second Law:

$$
\mathbf{F}(t)=m \mathbf{a}(t)
$$

Where $\mathbf{F}(t)$ is the force vector valued function, $\mathbf{a}(t)$ is the acceleration vector valued function, and m is the mass. If you're given the force, then you can find the acceleration by just dividing by the mass.

