Math 20C Practice Midterm

August 2015

Problem 1 (10 points)

Part A (5 points)
Compute

$$
\frac{\partial}{\partial x} e^{\sin \left(x^{2}+y^{2}\right)}
$$

Part B (5 points)
Compute

$$
\frac{\partial^{2}}{\partial x \partial y}\left(x^{2} e^{x}-6 x^{3}+y\right) \cos (x)
$$

Problem 2 (12 points)

Consider the vector-valued function:

$$
\boldsymbol{r}(t)=\langle\cos (3 t), \sin (3 t), \sqrt{7}\rangle
$$

Part A (3 points)

Compute $\boldsymbol{r}^{\prime}(t)$
Part B (3 points)
Compute $\boldsymbol{r}^{\prime \prime}(t)$
Part C (6 points)
Find the arc length of $\boldsymbol{r}(t)$ from $0 \leq t \leq 2 \pi$.

Problem 3 (13 points)

Consider the plane P given by the equation $3 x-10 y+2 z=5$

Part A (3 points)

Find a normal vector for the plane P.

Part B (5 points)

Using the answer from Part A, find a parametrization of a line (in the form $\boldsymbol{c}(t)=p_{0}+t \boldsymbol{v}$) that is perpendicular to the plane P.

Part C (5 points)

Using the answer from Part A, find a a parametrization of a line (in the form $\boldsymbol{c}(t)=p_{0}+t \boldsymbol{v}$) that is contained in the plane P.

Problem 4 (8 points)

Let $\boldsymbol{u}=\langle 1,5,2\rangle$ and $\boldsymbol{v}=\langle 2,1,-1\rangle$.
Part A (4 points)
Compute $\boldsymbol{u} \times \boldsymbol{v}$.
Part B (4 points)
Compute the projection of \boldsymbol{u} onto \boldsymbol{v}.

Problem 5 (6 points)

Find a parametrization of the tangent line (in the form $\boldsymbol{c}(t)=p_{0}+t \boldsymbol{v}$ to the curve:

$$
\boldsymbol{c}(t)=\left\langle e^{2 t}, t^{4}-1,5 t\right\rangle
$$

at the point $t=2$

