Math 20C Practice Midterm 1

Jor-el Briones

January 24th, 2015

1) Let $\mathbf{u} = \langle 1, 2, -2 \rangle$ and $\mathbf{v} = \langle 1, -3, 2 \rangle$ and $\mathbf{w} = \langle 11, -3, -2 \rangle$

- a) Compute $\mathbf{u} \times \mathbf{v}$
- b) Find the area of the paralellogram spanned by \mathbf{u} and \mathbf{v} .
- c) Express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} .
- d) Find $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$
- e) Find $\mathbf{e}_{\mathbf{u}}$
- **f**) Find the projection of \mathbf{v} along \mathbf{u}
- g) Find the point of intersection between the following two lines:

$$\mathbf{r}(t) = \langle 6+t, 12-3t, -12+2t \rangle \quad \mathbf{s}(t) = \langle 5, -15, 10 \rangle + t \langle 1, 2, -2 \rangle$$

2) Suppose **u** is a unit vector and suppose **v** is a vector with $||\mathbf{v}|| = 2$, for which $||\mathbf{u}+\mathbf{v}|| = \frac{3}{2}$. Find $||4\mathbf{u} - 2\mathbf{v}||$

3)

$$P = (5, 15, -10), \quad Q = (20, -5, 10), \quad R = (-1, -1, -1), \quad S = (4, 3, -2), \quad T = (-1, 2, 3)$$

Find a vector parametrization for the line with the given description:

Line that passes through the point on \overline{PQ} lying three fifths $(\frac{3}{5})$ of the way from P to Q, and is perpendicular to the plane that contains points R, S, and T.

4)

a) Find the equation of a plane that contains the line $\mathbf{r}(t) = \langle 3t, t, 2t+1 \rangle$ and is perpendicular to the plane 2x - y + 5z = 9001. Express your answer in 3 forms (one vector form, and two scalar forms).

b) Find $\cos(\theta)$, where θ is the angle between the plane found in part a) and the xz-plane.