Math 20C Practice Midterm 1
 Jor-el Briones

January 24th, 2015

1) Let $\mathbf{u}=\langle 1,2,-2\rangle$ and $\mathbf{v}=\langle 1,-3,2\rangle$ and $\mathbf{w}=\langle 11,-3,-2\rangle$
a) Compute $\mathbf{u} \times \mathbf{v}$
b) Find the area of the paralellogram spanned by \mathbf{u} and \mathbf{v}.
c) Express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}.
d) Find $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$
e) Find $\mathbf{e}_{\mathbf{u}}$
f) Find the projection of \mathbf{v} along \mathbf{u}
g) Find the point of intersection between the following two lines:

$$
\mathbf{r}(t)=\langle 6+t, 12-3 t,-12+2 t\rangle \quad \mathbf{s}(t)=\langle 5,-15,10\rangle+t\langle 1,2,-2\rangle
$$

2) Suppose \mathbf{u} is a unit vector and suppose \mathbf{v} is a vector with $\|\mathbf{v}\|=2$, for which $\|\mathbf{u}+\mathbf{v}\|=\frac{3}{2}$. Find $\|4 u-2 v\|$
3)

$$
P=(5,15,-10), \quad Q=(20,-5,10), \quad R=(-1,-1,-1), \quad S=(4,3,-2), \quad T=(-1,2,3)
$$

Find a vector parametrization for the line with the given description:
Line that passes through the point on $\overline{P Q}$ lying three fifths $\left(\frac{3}{5}\right)$ of the way from P to Q, and is perpendicular to the plane that contains points R, S, and T.
4)
a) Find the equation of a plane that contains the line $\mathbf{r}(t)=\langle 3 t, t, 2 t+1\rangle$ and is perpendicular to the plane $2 x-y+5 z=9001$. Express your answer in 3 forms (one vector form, and two scalar forms).
b) Find $\cos (\theta)$, where θ is the angle between the plane found in part a) and the xz-plane.

