Question 1 Suppose F is a C^1 vector field on \mathbb{R}^3. Let H be the unit hemisphere given by $x^2 + y^2 + z^2 = 1$ with $z \geq 0$, let D be the unit disk given by $z = 0$ with $x^2 + y^2 \leq 1$, and let $S = H \cup D$. Then,

A. $\partial H = \partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.

B. $\int \int_H (\nabla \times F) \cdot dS = \int \int_D (\nabla \times F) \cdot dS$.

C. $\int \int_S (\nabla \times F) \cdot dS = \int \int_H (\nabla \times F) \cdot dS + \int \int_D (\nabla \times F) \cdot dS$.

D. $\int \int_S (\nabla \times F) \cdot dS = 0$.

E. A, B and D
Question 2 Suppose \mathbf{F} is a C^2 vector field on \mathbb{R}^3, and let S be the unit sphere given by $x^2 + y^2 + z^2 = 1$. Then, \[\int\int_S (\nabla \times \mathbf{F}) \cdot dS \]

A. by Stokes’ Theorem is equal to $\int_{\partial S} \mathbf{F} \cdot ds$.

B. by Gauss’s Theorem is equal to $\int\int\int_B \nabla \cdot (\nabla \times \mathbf{F}) \, dV$, where B is the unit ball given by $x^2 + y^2 + z^2 \leq 1$.

C. is 0.

D. A and B

E. A, B, and C