Math 109: A List of Supplementary Exercises

1. Let b be a nonzero integer and let a, q and r be integers such that $a = bq + r$. Prove that $\gcd(a, b) = \gcd(b, r)$.

2. Let n be a positive integer and let a be an integer coprime to n. Prove that for every integer b, there is an integer x such that $ax - b$ is divisible by n.

3. Let a, b and c be integers such that $\gcd(a, c) = \gcd(b, c) = 1$. Prove that $\gcd(ab, c) = 1$.

4. Let a, b and c be integers such that a and b are coprime and c divides $a + b$. Prove that $\gcd(a, c) = \gcd(b, c) = 1$.

5. Show that $\gcd(5n + 2, 12n + 5) = 1$ for every integer n.

6. Let p and q be integers such that 3 divides $p^2 + q^2$. Prove that 3 divides p and 3 divides q.

7. Find a positive integer n and members $[a]$ and $[b]$ of \mathbb{Z}_n such that $[a] \cdot [b] = [0]$ but $[a] \neq [0]$ and $[b] \neq [0]$.

8. Prove that the nonzero element $[a]$ of \mathbb{Z}_n has a multiplicative inverse in \mathbb{Z}_n if and only if n and a are coprime.

9. Define \simeq on \mathbb{R} by $x \simeq y$ if and only if $x - y \in \mathbb{Z}$.
 (a) Prove that \simeq is an equivalence relation on \mathbb{R}.
 (b) Which real numbers belong to $[-17]$?
 (c) Characterize the partition Π on \mathbb{R} corresponding to \simeq.

10. Define \sim on the set $M_{n \times n}$ of all $n \times n$ matrices by $A \sim B$ if and only if there is an invertible matrix $P \in M_{n \times n}$ such that $B = P^{-1}AP$. Prove that \sim is an equivalence relation on $M_{n \times n}$.

11. For each real number b, let $A_b = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = |x + b|\}$, and let $\mathcal{A} = \{A_b \mid b \in \mathbb{R}\}$. Is \mathcal{A} a partition of $\mathbb{R} \times \mathbb{R}$? Justify your answer.

12. For each real number b, let $A_b = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = |x| + b\}$, and let $\mathcal{A} = \{A_b \mid b \in \mathbb{R}\}$. Is \mathcal{A} a partition of $\mathbb{R} \times \mathbb{R}$? Justify your answer.