Question 1 Consider the iterated integral

\[
\int_{y=0}^{\sqrt{\pi/2}} \int_{x=y}^{\sqrt{\pi/2}} \sin(x^2) \, dx \, dy.
\]

Which best describes how it might be evaluated?

A. The iterated integral can easily be integrated by evaluating it as written, integrating with respect to \(x \) first and then \(y \).

B. The iterated integral is impossible to integrate analytically because the antiderivative of \(\sin(x^2) \) cannot be expressed in terms of elementary functions.

C. The iterated integral should be expressed as

\[
\int \int_D \sin(x^2) \, dA
\]

for an appropriate region \(D \).

D. The iterated integral should be rewritten as an iterated integral with respect to \(y \) first and then \(x \).

*E. Both C and D: one should determine the region \(D \) in C in order to determine the appropriate limits of integration for the re-ordered iterated integral in D.
Question 2 Consider the triple integral

\[\int_{z=p}^{q} \int_{y=c}^{d} \int_{x=a}^{b} f(x, y, z) \, dx \, dy \, dz. \]

Which of the following best describes the possibility(s) for the order of integration?

A. There is only one possible order of integration: the one given.

B. There are two possible orders of integration: \(x \) and \(y \) may be switched, as in double integrals.

C. There are three possible orders of integration: one for each variable.

*D. There are six possible orders of integration: one for each permutation of \((x, y, z)\).

E. None of the above: not enough information is given about the region of integration to decide.
Question 3 The speed of an object is constant. The object’s

*A. velocity and acceleration are perpendicular.

*B. acceleration is zero.

*C. velocity is constant.

*D. both B and C.