Question 1 Given a path $c : [a, b] \to \mathbb{R}^n$. c is *regular* at t_0 means

A. the derivative $c'(t_0)$ exists.

B. the derivative $c'(t_0)$ exists and is not zero.

C. the image curve $c([a, b])$ has a tangent vector at $c(t_0)$.

D. $c'(t_0)$ is a unit vector.

E. both B and C.
Question 2 Two paths \(c_1 : [0, 2\pi] \rightarrow \mathbb{R}^3 \) and \(c_1 : [0, 2\pi] \rightarrow \mathbb{R}^3 \) are given by

\[
 c_1(t) = (\cos(t), \sin(t), t) \\
 c_2(t) = (\cos(2\pi - t), \sin(2\pi - t), 2\pi - t)
\]

The lengths of the corresponding curves are

A. the same since the curves defined by the paths are the same.

B. of opposite sign since the paths traverse the curves in opposite directions.

C. cannot be computed because the antiderivative of \(\|c_1'(t)\| \) and \(\|c_2'(t)\| \) cannot be computed.

D. both B and C

E. none of the above
Question 3 Two paths \(c_1 : [0, 2\pi] \rightarrow \mathbb{R}^3 \) and \(c_1 : [0, 2\pi] \rightarrow \mathbb{R}^3 \) are given by

\[
\begin{align*}
c_1(t) &= (\cos(t), \sin(t), t) \\
c_2(t) &= (\cos(2\pi - t), \sin(2\pi - t), 2\pi - t)
\end{align*}
\]

Let \(\mathbf{F}(x, y, z) \) be any \(C^1 \) vector field. The value of the line integrals \(\int_{c_1} \mathbf{F} \cdot ds \) and \(\int_{c_2} \mathbf{F} \cdot ds \) are

A. the same since the curves defined by the paths are the same.

*B. of opposite sign since the paths traverse the curves in opposite directions.

C. cannot be computed because the antiderivative of \(||c_1'(t)|| \) and \(||c_2'(t)|| \) cannot be computed.

D. both B and C

E. none of the above
Question 4 Given \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) a \(C^1 \) scalar-valued function and \(c : [a, b] \rightarrow \mathbb{R}^n \) a simple \(C^1 \) path,

A. \(Df(t) = \nabla f (c(t)) \cdot c'(t) \) by the chain rule.

B. \(\int_c \nabla f \cdot ds = \int_a^b \nabla f (c(t)) \cdot c'(t) \, dt. \)

C. The value of \(\int_c \nabla f \cdot ds \) is independent of the path \(c \).

D. \(\int_c \nabla f \cdot ds = f(c(b)) - f(c(a)) \), which depends only on the value of \(f \) at the endpoints \(c(a) \) and \(c(b) \).

*E. All of the above.