Math 142A Homework Assignment 2 (Corrected) Due Wednesday, October 18

- 1. Given a sequence $\{a_n\}$. Prove that $\lim_{n\to\infty} |a_n| = \infty$ if and only if $\lim_{n\to\infty} \frac{1}{a_n} = 0$.
- 2. Let $\{a_n\}$ and $\{b_n\}$ be sequences. Prove the following statements.
 - (a) If $a_n \to L$ and $a_n \le K$ for every index n, then $L \le K$.
 - (b) If $a_n \to L$, $b_n \to K$, and $a_n \le b_n$ for every index n, then $L \le K$.
 - (c) If $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$ for every n, then $c_n \to L$.
- 3. Given a sequence $\{c_n\}$. Prove that $c_n \to c$ if and only if $c_n c \to 0$.
- 4. Prove that $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$.

Hint: Set $\alpha_n = n^{\frac{1}{n}} - 1$ and show that $n = (1 + \alpha_n)^n \ge 1 + \frac{n(n-1)}{2}\alpha_n^2$ for every index n by applying the Binomial Formula.

- 5. Show that the set $(-\infty, 0]$ is closed.
- 6. Show that every real number is the limit of a sequence of irrational numbers.
- 7. Show that the set of irrational numbers fails to be closed.