Math 142A Homework Assignment 3

Due Wednesday, October 25

1. Let $\left\{a_{n}\right\}$ be a monotone sequence.
(a) Prove that $\left\{a_{n}\right\}$ converges if and only if $\left\{a_{n}^{2}\right\}$ converges.
(b) Show that the result in part (a) is false if $\left\{a_{n}\right\}$ is not monotone.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences such that $a_{n}<b_{n}$ for every index n. For each index n, define the interval $I_{n}=\left[a_{n}, b_{n}\right]$.
Suppose that

$$
I_{n+1} \subseteq I_{n} \quad \text { for every index } n
$$

Using the Monotone Convergence Theorem, prove that
(a) $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ with $a \leq b$, and
(b) $[a, b] \subseteq I_{n}$ for every index n.
3. Show that a strictly increasing sequence has no peak indices.
4. Show that every index of a monotonically decreasing sequence is a peak index.
5. Suppose $\left\{a_{n}\right\}$ is a monotone sequence with a subsequence $\left\{a_{n_{k}}\right\}$ such that $a_{n_{k}} \rightarrow a$. Prove that $a_{n} \rightarrow a$.

