Math 142A Homework Assignment 4 Due Wednesday, November 8

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous at x_0 with $f(x_0) > 0$. Prove that there is a natural number n for which f(x) > 0 for all x in the interval $I := (x_0 1/n, x_0 + 1/n)$.
- 2. A function $f: D \to \mathbb{R}$ is said to be a *Lipschitz function* if there is a $C \ge 0$ such that $|f(u) f(v)| \le C |u v|$ for all u, v in D. Prove that a Lipschitz function is continuous.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ have the property that f(u+v) = f(u) + f(v) for all u and v.
 - (a) Let m := f(1). Prove that f(x) = mx for all rational numbers x.
 - (b) Prove that if f is continuous, then f(x) = mx for all x.
- 4. Let S be a nonempty set of real numbers that is *not* sequentially compact. Prove that there is an unbounded sequence in S or there is a sequence in S that converges to a point x_0 which is not in S.
- 5. Let $f: [0,1] \to \mathbb{R}$ be continuous with f(0) > 0 and f(1) = 0. Prove that there is an x_0 in (0,1] such that $f(x_0) = 0$ and f(x) > 0 for all x in $[0, x_0)$; that is, there is a smallest point in the interval [0,1] at which f attains the value 0.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function whose image $f(\mathbb{R})$ is bounded. Prove that there is a solution to the equation f(x) = x.
- 7. Let $f : [a, b] \to \mathbb{R}$ be continuous. Given a natural number k, let x_1, \ldots, x_k be points in [a, b]. Prove that there is a point z in [a, b] at which

$$f(z) = \frac{f(x_1) + \dots + f(x_k)}{k}.$$

[Note: As $k \to \infty$, this becomes the mean value theorem for integrals (Theorem 6.26).]

- 8. Given $f: [0,1] \to \mathbb{R}$ continuous such that $f([0,1]) \subseteq \mathbb{Q}$. Show that f is a constant function.
- 9. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be uniformly continuous functions. Define the product function $fg: D \to \mathbb{R}$ by (fg)(x) := f(x)g(x).
 - (a) Show that fg need not be uniformly continuous.
 - (b) Prove that if f and g are also bounded, then fg is uniformly continuous. Hint: Write f(u)g(u) - f(v)g(v) = f(u) [g(u) - g(v)] + g(v) [f(u) - f(v)].
- 10. A function $f: D \to \mathbb{R}$ is called a *Lipschitz function* if there is a $C \ge 0$ such that $|f(u) f(v)| \le C |u v|$ for all $u, v \in D$. Prove that if f is a Lipschitz function, then f is uniformly continuous.