Math 142A Homework Assignment 4
 Due Wednesday, November 8

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous at x_{0} with $f\left(x_{0}\right)>0$. Prove that there is a natural number n for which $f(x)>0$ for all x in the interval $I:=\left(x_{0}-1 / n, x_{0}+1 / n\right)$.
2. A function $f: D \rightarrow \mathbb{R}$ is said to be a Lipschitz function if there is a $C \geq 0$ such that $|f(u)-f(v)| \leq C|u-v|$ for all u, v in D. Prove that a Lipschitz function is continuous.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have the property that $f(u+v)=f(u)+f(v)$ for all u and v.
(a) Let $m:=f(1)$. Prove that $f(x)=m x$ for all rational numbers x.
(b) Prove that if f is continuous, then $f(x)=m x$ for all x.
4. Let S be a nonempty set of real numbers that is not sequentially compact. Prove that there is an unbounded sequence in S or there is a sequence in S that converges to a point x_{0} which is not in S.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous with $f(0)>0$ and $f(1)=0$. Prove that there is an x_{0} in $(0,1]$ such that $f\left(x_{0}\right)=0$ and $f(x)>0$ for all x in $\left[0, x_{0}\right)$; that is, there is a smallest point in the interval $[0,1]$ at which f attains the value 0 .
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function whose image $f(\mathbb{R})$ is bounded. Prove that there is a solution to the equation $f(x)=x$.
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Given a natural number k, let x_{1}, \ldots, x_{k} be points in $[a, b]$. Prove that there is a point z in $[a, b]$ at which

$$
f(z)=\frac{f\left(x_{1}\right)+\cdots+f\left(x_{k}\right)}{k} .
$$

[Note: As $k \rightarrow \infty$, this becomes the mean value theorem for integrals (Theorem 6.26).]
8. Given $f:[0,1] \rightarrow \mathbb{R}$ continuous such that $f([0,1]) \subseteq \mathbb{Q}$. Show that f is a constant function.
9. Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ be uniformly continuous functions. Define the product function $f g: D \rightarrow \mathbb{R}$ by $(f g)(x):=f(x) g(x)$.
(a) Show that $f g$ need not be uniformly continuous.
(b) Prove that if f and g are also bounded, then $f g$ is uniformly continuous. Hint: Write $f(u) g(u)-f(v) g(v)=f(u)[g(u)-g(v)]+g(v)[f(u)-f(v)]$.
10. A function $f: D \rightarrow \mathbb{R}$ is called a Lipschitz function if there is a $C \geq 0$ such that $|f(u)-f(v)| \leq C|u-v|$ for all $u, v \in D$. Prove that if f is a Lipschitz function, then f is uniformly continuous.

