Math 142A Homework Assignment 5 Due Wednesday, November 15

- 1. Show that $f : [1, \infty) \to \mathbb{R}$ given by $f(x) = \sqrt{x}$ satisfies the $\varepsilon \delta$ criterion on $[1, \infty)$. Conclude that f is uniformly continuous.
- 2. Show that if $f:(a,b) \to \mathbb{R}$ is uniformly continuous, then f is bounded; that is, f((a,b)) is bounded.
- 3. Exhibit an example of
 - (a) a continuous function $f:(0,1) \to \mathbb{R}$ that is not bounded.
 - (b) a bounded continuous function $g: (0,1) \to \mathbb{R}$ that is not uniformly continuous.
- 4. Show that any function $f : \mathbb{Z} \to \mathbb{R}$ is uniformly continuous. [Recall that \mathbb{Z} is the set of integers.]
- 5. Let $f: [0, \infty) \to \mathbb{R}$ be a monotone function. Prove that $\lim_{x \to \infty} f(x) = L$ for some number L if and only if $f([0, \infty))$ is bounded.
- 6. f: R → R is said to be odd if f(-x) = -f(x) for all x. Show that if f: R → R is odd and f|_{[0,∞)} is strictly increasing, then f is strictly increasing.
 [Note: f|_{[0,∞)} means f: [0,∞) → R, the restriction of f to [0,∞).]
- 7. Show that if $f : [a, b] \to \mathbb{R}$ is a monotone function satisfying the intermediate value property, then f is continuous.