Math 142A Homework Assignment 5

Due Wednesday, November 15

1. Show that $f:[1, \infty) \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{x}$ satisfies the $\varepsilon-\delta$ criterion on $[1, \infty)$. Conclude that f is uniformly continuous.
2. Show that if $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous, then f is bounded; that is, $f((a, b))$ is bounded.
3. Exhibit an example of
(a) a continuous function $f:(0,1) \rightarrow \mathbb{R}$ that is not bounded.
(b) a bounded continuous function $g:(0,1) \rightarrow \mathbb{R}$ that is not uniformly continuous.
4. Show that any function $f: \mathbb{Z} \rightarrow \mathbb{R}$ is uniformly continuous.
[Recall that \mathbb{Z} is the set of integers.]
5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a monotone function. Prove that $\lim _{x \rightarrow \infty} f(x)=L$ for some number L if and only if $f([0, \infty))$ is bounded.
6. $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be odd if $f(-x)=-f(x)$ for all x. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is odd and $\left.f\right|_{[0, \infty)}$ is strictly increasing, then f is strictly increasing.
$\left[\right.$ Note: $\left.f\right|_{[0, \infty)}$ means $f:[0, \infty) \rightarrow \mathbb{R}$, the restriction of f to $[0, \infty)$.]
7. Show that if $f:[a, b] \rightarrow \mathbb{R}$ is a monotone function satisfying the intermediate value property, then f is continuous.
