Math 142A Homework Assignment 7
 Due Wednesday, December 6

1. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Assuming knowledge of the sine and cosine functions from your calculus class, f is differentiable for all $x \in \mathbb{R} \backslash\{0\}$.
(a) Show that f is differentiable at $x=0$. (Thus, f is differentiable for all x.)
(b) Show that $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is not continuous at $x=0$.
2. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing differentiable function with $h^{\prime}(x)>0$ for all x and $h(\mathbb{R})=\mathbb{R}$. Given $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x):=f\left(h^{-1}(x)\right)$ for all x. Find $g^{\prime}(x)$.
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and that there exists a strictly increasing bounded sequence $\left\{x_{n}\right\}$ such that $f\left(x_{n}\right) \leq f\left(x_{n+1}\right)$ for all indices n. Show that there is an x_{0} at which $f^{\prime}\left(x_{0}\right) \geq 0$. (Note: f itself need not be monotonically increasing; take, for example, $f(x)=\sin (x)$ and $x_{n}=\frac{n \pi-2}{2 n}$.)
4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called $\begin{cases}\text { even } & \text { if } f(x)=f(-x) \text { for all } x, \\ \text { odd } & \text { if } f(x)=-f(-x) \text { for all } x .\end{cases}$
(a) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and odd, then $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is even.
(b) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and even, then $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is odd.
5. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x):= \begin{cases}x-x^{2} & \text { if } x \in \mathbb{Q} \\ x+x^{2} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

(a) Show that $f^{\prime}(0)=1$.
(b) Show that there is no neighborhood I of the point 0 on which f is monotonically increasing.
6. Let $n \in \mathbb{N}$ and suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and that the equation $f^{\prime}(x)=0$ has at most $n-1$ solutions $x_{j} \in \mathbb{R}, 1 \leq j \leq n-1$. Prove that the equation $f(x)=0$ has at most n solutions $x_{k} \in \mathbb{R}, 1 \leq k \leq n$.
7. Suppose $f:(-1,1) \rightarrow \mathbb{R}$ has n derivatives and that its $n^{\text {th }}$ derivative $f^{(n)}:(-1,1) \rightarrow \mathbb{R}$ is bounded. Suppose further that $f(0)=f^{\prime}(0)=\cdots=f^{(n-1)}(0)=0$. Show that there is an $M>0$ such that $|f(x)| \leq M|x|^{n}$ for all $x \in(-1,1)$.
8. Suppose $f:(-1,1) \rightarrow \mathbb{R}$ has n derivatives and that there is an $M>0$ such that $|f(x)| \leq M|x|^{n}$ for all $x \in(-1,1)$. Show that $f(0)=f^{\prime}(0)=\cdots=f^{(n-1)}(0)=0$.

