Math 142A Homework Assignment 7 Due Wednesday, December 6

1. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Assuming knowledge of the sine and cosine functions from your calculus class, f is differentiable for all $x \in \mathbb{R} \setminus \{0\}$.

- (a) Show that f is differentiable at x = 0. (Thus, f is differentiable for all x.)
- (b) Show that $f' : \mathbb{R} \to \mathbb{R}$ is not continuous at x = 0.
- 2. Let $h : \mathbb{R} \to \mathbb{R}$ be a strictly increasing differentiable function with h'(x) > 0 for all xand $h(\mathbb{R}) = \mathbb{R}$. Given $f : \mathbb{R} \to \mathbb{R}$ differentiable, define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) := f(h^{-1}(x))$ for all x. Find g'(x).
- 3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable and that there exists a strictly increasing bounded sequence $\{x_n\}$ such that $f(x_n) \leq f(x_{n+1})$ for all indices n. Show that there is an x_0 at which $f'(x_0) \geq 0$. (Note: f itself need not be monotonically increasing; take, for example, $f(x) = \sin(x)$ and $x_n = \frac{n\pi-2}{2n}$.)
- 4. A function $f : \mathbb{R} \to \mathbb{R}$ is called $\begin{cases} even & \text{if } f(x) = f(-x) \text{ for all } x, \\ odd & \text{if } f(x) = -f(-x) \text{ for all } x. \end{cases}$
 - (a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and odd, then $f' : \mathbb{R} \to \mathbb{R}$ is even.
 - (b) Show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and even, then $f' : \mathbb{R} \to \mathbb{R}$ is odd.
- 5. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) := \begin{cases} x - x^2 & \text{if } x \in \mathbb{Q}, \\ x + x^2 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- (a) Show that f'(0) = 1.
- (b) Show that there is no neighborhood I of the point 0 on which f is monotonically increasing.
- 6. Let $n \in \mathbb{N}$ and suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable and that the equation f'(x) = 0has at most n-1 solutions $x_j \in \mathbb{R}$, $1 \le j \le n-1$. Prove that the equation f(x) = 0has at most n solutions $x_k \in \mathbb{R}$, $1 \le k \le n$.
- 7. Suppose $f: (-1,1) \to \mathbb{R}$ has *n* derivatives and that its n^{th} derivative $f^{(n)}: (-1,1) \to \mathbb{R}$ is bounded. Suppose further that $f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$. Show that there is an M > 0 such that $|f(x)| \le M |x|^n$ for all $x \in (-1,1)$.
- 8. Suppose $f: (-1,1) \to \mathbb{R}$ has *n* derivatives and that there is an M > 0 such that $|f(x)| \leq M |x|^n$ for all $x \in (-1,1)$. Show that $f(0) = f'(0) = \cdots = f^{(n-1)}(0) = 0$.