The Goat and Silo Problem

Problem. A goat is tethered to a cylindrical silo of radius r with a rope of length $l, l \leq \pi r$. (See Figure 1.) Find the area of the region the goat can graze.

Solution. The area the goat can graze is $\frac{\pi l^{2}}{2}$ plus twice the "evolute area" (see Figure 2). To find the evolute area, we evaluate the line integral $\frac{1}{2} \int_{C}-y d x+x d y$ along its boundary curve C. To do this, we observe that $C=C_{1} \cup C_{2} \cup C_{3}$, where C_{1} is the circular arc along the silo, C_{2} is the line tangent to the silo at the point where the goat is tethered, and C_{3} is the evolute (Figure 2). The curves C_{1}, C_{2}, and C_{3} can be parametrized as follows. (Note that the parametrizations describe a counterclockwise path.)

$$
\begin{aligned}
& C_{1}: \mathbf{r}(t)=r\left(\cos \left(\frac{l}{r}-t\right), \sin \left(\frac{l}{r}-t\right)\right) \\
& C_{2}: \mathbf{r}(t)=r(1, t) \\
& C_{3}: \mathbf{r}(t)=r\left(\cos t-\left(\frac{l}{r}-t\right) \sin t, \sin t+\left(\frac{l}{r}-t\right) \cos t\right)
\end{aligned}
$$

where $t \in\left[0, \frac{l}{r}\right]$. By additivity, the line integral around C is the sum of the line integrals along C_{1}, C_{2}, and C_{3}.

$$
\begin{aligned}
\frac{1}{2} \int_{C_{1}}-y d x+x d y & =\frac{r^{2}}{2} \int_{0}^{\frac{l}{r}}\left[-\sin ^{2}\left(\frac{l}{r}-t\right)-\cos ^{2}\left(\frac{l}{r}-t\right)\right] d t \\
& =-\frac{r^{2}}{2} \int_{0}^{\frac{l}{r}} d t \\
& =-\frac{l r}{2} \\
\frac{1}{2} \int_{C_{2}}-y d x+x d y & =\frac{r^{2}}{2} \int_{0}^{\frac{l}{r}} d t \\
& =\frac{l r}{2} \\
\frac{1}{2} \int_{C_{3}}-y d x+x d y & =\frac{r^{2}}{2} \int_{0}^{\frac{l}{r}}\left\{\left[\sin t+\left(\frac{l}{r}-t\right) \cos t\right]\left(\frac{l}{r}-t\right) \cos t-\right. \\
& =\frac{r^{2}}{2} \int_{0}^{\frac{l}{r}}\left(\frac{l}{r}-t\right)^{2} d t \\
& =\frac{l^{3}}{6 r} \\
\frac{1}{2} \int_{C}-y d x+x d y & =-\frac{l r}{2}+\frac{l r}{2}+\frac{l^{3}}{6 r}=\frac{l^{3}}{6 r}
\end{aligned}
$$

Thus, the total area A the goat can graze is given by

$$
A=\frac{\pi l^{2}}{2}+2 \frac{l^{3}}{6 r}=\frac{\pi l^{2}}{2}+\frac{l^{3}}{3 r} .
$$

The reason for the restriction $l \leq \pi r$ is illustrated in Figure 3. For another approach to this problem, see
M. E. Hoffman, The Bull and the Silo: An Application of Curvature, American Mathematical Monthly, January 1998, pages 55-58.

Figure 1: Goat's Grazing Area

Figure 2: Evolute Area

Figure 3: Goat's Grazing Area: $l>\pi r$

