Math 142B
 September 4, 2018

Question 1 For each index n, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be given by
$f_{n}(x)= \begin{cases}1 & \text { if } x=\frac{k}{2^{n}} \text { for some integer } k, 0 \leq k \leq 2^{n} \\ 0 & \text { otherwise }\end{cases}$
Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$.
Then,
A. $\int_{0}^{1} f_{n}=0$ for every index n.
B. $\int_{0}^{1} f=0$ and $\int_{0}^{1} f=1$.
C. $\int_{0}^{1} f=0$.
*D. A and B.
E. A and C.

Question 2 For each index n, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be given by
$f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<\frac{1}{n} \\ 2 n-n^{2} x & \text { if } \frac{1}{n} \leq x<\frac{2}{n} \\ 0 & \text { if } \frac{2}{n} \leq x \leq 1\end{cases}$
Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$. Then,
A. $\int_{0}^{1} f_{n}=1$ for every index n.
B. $\int_{0}^{1} f=0$.
C. $\int_{0}^{1} f=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}$.
*D. A and B.
E. A and C.

Question 3 For each natural number n, define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by $f_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}$. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=e^{x}$. Then, $\left\{f_{n}\right\}$ converges pointwise on $[0,1]$ to f. We can also say that
A. $\left\{f_{n}\right\}$ converges uniformly to f on $[0,1]$.
B. $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=\int_{0}^{1} f$.
C. $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$ for each $x \in(0,1)$.
D. B and C.
*E. All of the above.

Question 4 Given a sequence of functions $\left\{f_{n}:[a, b] \rightarrow \mathbb{R}\right\}$ such that $\left\{f_{n}\right\}$ converges pointwise to f on $[a, b]$. Then we can say that
A. if f_{n} is integrable for every index n, then f is integrable.
B. if $\int_{a}^{b} f_{n}=1$ for every index n, then $\int_{a}^{b} f=1$.
C. if f_{n} is continuous for every index n, then f is continuous.
D. All of the above.
*E. None of the above.

Question 5 A sequence $\left\{a_{k}\right\}$ is Cauchy (or, is a Cauchy sequence) if for every $\varepsilon>0$, there is an index N such that $\left|a_{m}-a_{n}\right|<\varepsilon$ for all indices $m, n \geq N$.
Given that $\left\{b_{k}\right\}$ is a Cauchy sequence. Then $\left\{b_{k}\right\}$ is
A. convergent.
B. bounded.
C. sequentially compact.
*D. A and B.
E. B and C.

Question 6 A sequence of functions $\left\{f_{k}\right\}$ is uniformly Cauchy on D if for every $\varepsilon>0$, there is an index N such that $\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon$ for all indices $m, n \geq N$ and all $x \in D$.
Given that $\left\{g_{k}\right\}$ is uniformly Cauchy on $[0,1]$. Then,
A. For each $x \in[0,1],\left\{g_{k}(x)\right\}$ is a Cauchy sequence.
B. $\left\{g_{k}\right\}$ converges pointwise to a function $g:[0,1] \rightarrow \mathbb{R}$.
C. $\left\{g_{k}\right\}$ converges uniformly to a function $g:[0,1] \rightarrow \mathbb{R}$.
D. A and B.
*E. A, B, and C.

