Math 142B September 4, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 For each index *n*, let $f_n : [0,1] \to \mathbb{R}$ be given by $f_n(x) = \begin{cases} 1 & \text{if } x = \frac{k}{2^n} \text{ for some integer } k, \ 0 \le k \le 2^n \\ 0 & \text{otherwise} \end{cases}$ Let $f : [0,1] \to \mathbb{R}$ be given by $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in [0,1]$. Then,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A.
$$\int_{0}^{1} f_{n} = 0 \text{ for every index } n.$$

B.
$$\int_{0}^{1} f = 0 \text{ and } \int_{0}^{1} f = 1.$$

C.
$$\int_{0}^{1} f = 0.$$

*D. **A** and **B**.

E. A and C.

Question 2 For each index *n*, let $f_n : [0,1] \to \mathbb{R}$ be given by $f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < \frac{1}{n} \\ 2n - n^2 x & \text{if } \frac{1}{n} \le x < \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} \le x \le 1 \end{cases}$ Let $f : [0,1] \to \mathbb{R}$ be given by $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in [0,1]$.
Then,

A D N A 目 N A E N A E N A B N A C N

A.
$$\int_{0}^{1} f_{n} = 1 \text{ for every index } n.$$

B.
$$\int_{0}^{1} f = 0.$$

C.
$$\int_{0}^{1} f = \lim_{n \to \infty} \int_{0}^{1} f_{n}.$$

*D. **A** and **B**.
E. A and **C**.

Question 3 For each natural number *n*, define $f_n : [0,1] \to \mathbb{R}$ by $f_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k$. Define $f : [0,1] \to \mathbb{R}$ by $f(x) = e^x$. Then, $\{f_n\}$ converges pointwise on [0,1] to f. We can also say that

A.
$$\{f_n\}$$
 converges uniformly to f on $[0, 1]$.
B. $\lim_{n \to \infty} \int_0^1 f_n = \int_0^1 f$.
C. $\lim_{n \to \infty} f'_n(x) = f'(x)$ for each $x \in (0, 1)$.
D. **B** and **C**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

*E. All of the above.

Question 4 Given a sequence of functions $\{f_n : [a, b] \to \mathbb{R}\}$ such that $\{f_n\}$ converges pointwise to f on [a, b]. Then we can say that

A. if f_n is integrable for every index n, then f is integrable.

B. if
$$\int_{a}^{b} f_{n} = 1$$
 for every index *n*, then $\int_{a}^{b} f = 1$.

C. if f_n is continuous for every index n, then f is continuous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

D. All of the above.

*E. None of the above.

Question 5 A sequence $\{a_k\}$ is Cauchy (or, is a Cauchy sequence) if for every $\varepsilon > 0$, there is an index N such that $|a_m - a_n| < \varepsilon$ for all indices $m, n \ge N$. Given that $\{b_k\}$ is a Cauchy sequence. Then $\{b_k\}$ is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A. convergent.
- B. bounded.
- C. sequentially compact.
- *D. **A** and **B**.
 - ${\sf E}. \ {\sf B} \ {\sf and} \ {\sf C}.$

Question 6 A sequence of functions $\{f_k\}$ is uniformly Cauchy on *D* if for every $\varepsilon > 0$, there is an index *N* such that $|f_m(x) - f_n(x)| < \varepsilon$ for all indices $m, n \ge N$ and all $x \in D$. Given that $\{g_k\}$ is uniformly Cauchy on [0, 1]. Then,

A. For each $x \in [0,1]$, $\{g_k(x)\}$ is a Cauchy sequence.

- B. $\{g_k\}$ converges pointwise to a function $g:[0,1] \to \mathbb{R}$.
- C. $\{g_k\}$ converges uniformly to a function $g:[0,1] \to \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- D. A and B.
- *E. A, B, and C.