Math 142B
 September 6, 2018

Question 1 Setting $f_{n}(x)=\sum_{k=0}^{n}(-1)^{k} x^{2 k}$ for $x \in[0,1]$ defines a sequence $\left\{f_{n}:[0,1] \rightarrow \mathbb{R}\right\}$.
Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{1+x^{2}}$. Then,
*A. $\int_{0}^{1} f=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}$; this is the Newton-Gregory Formula.
B. $\left\{f_{n}\right\}$ converges pointwise on $[0,1]$ to f.
C. $\left\{f_{n}\right\}$ converges uniformly on $[0,1]$ to f.
D. All of the above.
E. None of the above.

Question 2 Given a series $\sum_{k=1}^{\infty} a_{k}$ such that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$. Then,
A. $\sum_{k=1}^{\infty} a_{k}$ converges conditionally whenever $L=1$.
B. $\sum_{k=1}^{\infty} a_{k}$ converges absolutely whenever $L<1$.
C. $\sum_{k=1}^{\infty} a_{k}$ diverges whenever $L>1$.
D. A and B.
*E. B and C.

Question 3 Setting $f_{n}(x)=\frac{1}{n} \tan ^{-1}\left(n^{2} x\right)$ defines a sequence $\left\{f_{n}: \mathbb{R} \rightarrow \mathbb{R}\right\}$ of infinitely differentiable functions. In addition,
A. $\left\{f_{n}\right\}$ converges pointwise on \mathbb{R} to 0 since $\lim _{n \rightarrow \infty} \frac{1}{n} \tan ^{-1}\left(n^{2} x\right)=0$ for all x.
B. $\left\{f_{n}\right\}$ converges uniformly on \mathbb{R} to 0 since $\left|f_{n}(x)\right|<\frac{\pi}{2 n}$ for all x.
C. $\left\{f_{n}^{\prime}(0)\right\}$ is unbounded, even though $\left\{f_{n}\right\}$ converges uniformly on \mathbb{R}.
D. A and B.
*E. A, B, and C.

Question 4 Given a power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ with D its domain of convergence. Let $r>0$ such that $(-r, r) \subseteq D$ and define $f:(-r, r) \rightarrow \mathbb{R}$ by $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then,
A. f is infinitely differentiable.
B. $\frac{d^{n}}{d x^{n}} f(x)=\sum_{k=0}^{\infty} c_{k} \frac{d^{n}}{d x^{n}} x^{k}$ for each index n.
C. $\frac{f^{(n)}(0)}{n!}=c_{n}$ for each index n.
*D. All of the above.
E. None of the above.

Question 5 Given a power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ with a bounded domain of convergence D. Define $R:=\sup D$. Then,
A. $(-R, R) \subseteq D \subseteq[-R, R]$.
B. D is one of: $(-R, R),[-R, R),(-R, R]$, or $[-R, R]$.
C. R is called the radius of convergence of $\sum_{k=0}^{\infty} c_{k} x^{k}$.
*D. All of the above.
E. None of the above.

Question 6 A sequence of functions $\left\{f_{k}\right\}$ is uniformly Cauchy on D if for every $\varepsilon>0$, there is an index N such that $\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon$ for all indices $m, n \geq N$ and all $x \in D$.
Given that $\left\{g_{k}\right\}$ is uniformly Cauchy on $[0,1]$. Then,
A. For each $x \in[0,1],\left\{g_{k}(x)\right\}$ is a Cauchy sequence.
B. $\left\{g_{k}\right\}$ converges pointwise to a function $g:[0,1] \rightarrow \mathbb{R}$.
C. $\left\{g_{k}\right\}$ converges uniformly to a function $g:[0,1] \rightarrow \mathbb{R}$.
D. A and B.
*E. A, B, and C.

Question 7 Clicker questions were used throughout this course to think about the ideas in new ways and to review previously considered ideas. I found the clicker questions to be
A. a helpful aid for study and review.
B. an amusing way to begin each class.
C. a complete waste of time; I would have rather slept longer.
D. each of the above, depending on which day it was.
E. none of the above; I think I'm getting tinnitus.

