Math 142B September 6, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Setting $f_n(x) = \sum_{k=0}^n (-1)^k x^{2k}$ for $x \in [0,1]$ defines a sequence $\{f_n : [0,1] \to \mathbb{R}\}$. Let $f : [0,1] \to \mathbb{R}$ be defined by $f(x) = \frac{1}{1+x^2}$. Then,

*A. $\int_0^1 f = \lim_{n \to \infty} \int_0^1 f_n$; this is the Newton-Gregory Formula.

- B. $\{f_n\}$ converges pointwise on [0, 1] to f.
- C. $\{f_n\}$ converges uniformly on [0, 1] to f.
- D. All of the above.
- E. None of the above.

Question 2 Given a series
$$\sum_{k=1}^{\infty} a_k$$
 such that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$. Then,

A.
$$\sum_{k=1}^{\infty} a_k$$
 converges conditionally whenever $L = 1$.

B.
$$\sum_{k=1} a_k$$
 converges absolutely whenever $L < 1$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

C.
$$\sum_{k=1}^{\infty} a_k$$
 diverges whenever $L > 1$.

D. **A** and **B**.

 ∞

*E. **B** and **C**.

Question 3 Setting $f_n(x) = \frac{1}{n} \tan^{-1}(n^2 x)$ defines a sequence $\{f_n : \mathbb{R} \to \mathbb{R}\}$ of infinitely differentiable functions. In addition,

A.
$$\{f_n\}$$
 converges pointwise on \mathbb{R} to 0 since

$$\lim_{n \to \infty} \frac{1}{n} \tan^{-1}(n^2 x) = 0 \text{ for all } x.$$

- B. $\{f_n\}$ converges uniformly on \mathbb{R} to 0 since $|f_n(x)| < \frac{\pi}{2n}$ for all x.
- C. $\{f'_n(0)\}$ is unbounded, even though $\{f_n\}$ converges uniformly on \mathbb{R} .

- D. A and B.
- *E. A, B, and C.

Question 4 Given a power series $\sum_{k=0}^{\infty} c_k x^k$ with D its domain of convergence. Let r > 0 such that $(-r, r) \subseteq D$ and define $f : (-r, r) \to \mathbb{R}$ by $f(x) = \sum_{k=0}^{\infty} c_k x^k$. Then,

A. f is infinitely differentiable.

B.
$$\frac{d^n}{dx^n}f(x) = \sum_{k=0}^{\infty} c_k \frac{d^n}{dx^n} x^k$$
 for each index *n*.
C. $\frac{f^{(n)}(0)}{n!} = c_n$ for each index *n*.

*D. All of the above.

E. None of the above.

Question 5 Given a power series $\sum_{k=0}^{\infty} c_k x^k$ with a bounded domain of convergence *D*. Define $R := \sup D$. Then,

A.
$$(-R, R) \subseteq D \subseteq [-R, R]$$
.
B. *D* is one of: $(-R, R)$, $[-R, R)$, $(-R, R]$, or $[-R, R]$.
C. *R* is called the radius of convergence of $\sum_{k=0}^{\infty} c_k x^k$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- *D. All of the above.
 - E. None of the above.

Question 6 A sequence of functions $\{f_k\}$ is uniformly Cauchy on *D* if for every $\varepsilon > 0$, there is an index *N* such that $|f_m(x) - f_n(x)| < \varepsilon$ for all indices $m, n \ge N$ and all $x \in D$. Given that $\{g_k\}$ is uniformly Cauchy on [0, 1]. Then,

A. For each $x \in [0,1]$, $\{g_k(x)\}$ is a Cauchy sequence.

- B. $\{g_k\}$ converges pointwise to a function $g:[0,1] \to \mathbb{R}$.
- C. $\{g_k\}$ converges uniformly to a function $g:[0,1] \to \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- D. A and B.
- *E. A, B, and C.

Question 7 Clicker questions were used throughout this course to think about the ideas in new ways and to review previously considered ideas. I found the clicker questions to be

- A. a helpful aid for study and review.
- B. an amusing way to begin each class.
- C. a complete waste of time; I would have rather slept longer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- D. each of the above, depending on which day it was.
- E. none of the above; I think I'm getting tinnitus.