Math 142B
 August 7, 2018

Question 1 A partition P of an interval $[a, b]$ is
A. a finite set of points contained in $[a, b]$.
B. a subinterval of $[a, b]$.
C. a finite collection of subintervals of $[a, b]$ whose union is $[a, b]$.
*D. \mathbf{A} and, in addition, $\{a, b\} \subseteq P$.
E. None of the above.

Question 2 Given P a partition of $[a, b] . P^{*}$ is a refinement of P if
A. P^{*} has more partition intervals than P.
B. P^{*} is also a partition of $[a, b]$.
C. $P^{*} \supseteq P$.
D. A and B.
*E. B and C.

Question 3 Consider the open interval $I=(1,10)$ and the finite set $P=\{1,3,6,7,10\}$.
A. P is a partition of I.
B. P is a partition of $I \cup\{1,10\}$.
C. I doesn't have any partitions.
*D. B and C.
E. None of the above.

Question $4 P=\{1,3 / 2,5 / 2,4\}$ is a partition of $[1,4]$ with partition intervals $I_{1}=[1,3 / 2], l_{2}=[3 / 2,5 / 2], I_{3}=[5 / 2,4]$. $P^{*}=\{1,3 / 2,2,5 / 2,3,7 / 2,4\}$ is a refinement of P with $P_{1}=\{1,3 / 2\}, P_{2}=\{3 / 2,2,5 / 2\}, P_{3}=\{5 / 2,3,7 / 2,4\}$.
A. $P^{*}=P_{1} \cup P_{2} \cup P_{3}$.
B. P_{i} is a partition of I_{i} for each index $i=1,2,3$.
C. $\operatorname{gap}\left(P^{*}\right)<\operatorname{gap}(P)$.
D. A and B.
*E. A, B, and C.

Question 5 Given $f:[a, b] \rightarrow \mathbb{R}$ bounded and $P \subseteq P^{*}$ partitions of $[a, b]$.
A. P^{*} is a refinement of P.
B. $L\left(f, P^{*}\right)=L(f, P)$ and $U\left(f, P^{*}\right)=U(f, P)$.
C. $L\left(f, P^{*}\right) \geq L(f, P)$ and $U\left(f, P^{*}\right) \leq U(f, P)$.
D. A and B.
*E. A and C.

