Math 142B August 7, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 A partition P of an interval [a, b] is

- A. a finite set of points contained in [a, b].
- B. a subinterval of [a, b].
- C. a finite collection of subintervals of [*a*, *b*] whose union is [*a*, *b*].

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- *D. **A** and, in addition, $\{a, b\} \subseteq P$.
 - E. None of the above.

Question 2 Given P a partition of [a, b]. P^* is a refinement of P if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- A. P^* has more partition intervals than P.
- B. P^* is also a partition of [a, b].
- C. $P^* \supseteq P$.
- D. A and B.
- *E. **B** and **C**.

Question 3 Consider the open interval I = (1, 10) and the finite set $P = \{1, 3, 6, 7, 10\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A. P is a partition of I.
- B. P is a partition of $I \cup \{1, 10\}$.
- C. I doesn't have any partitions.
- *D. **B** and **C**.
 - E. None of the above.

Question 4 $P = \{1, 3/2, 5/2, 4\}$ is a partition of [1, 4] with partition intervals $I_1 = [1, 3/2], I_2 = [3/2, 5/2], I_3 = [5/2, 4].$ $P^* = \{1, 3/2, 2, 5/2, 3, 7/2, 4\}$ is a refinement of P with $P_1 = \{1, 3/2\}, P_2 = \{3/2, 2, 5/2\}, P_3 = \{5/2, 3, 7/2, 4\}.$

 $\mathsf{A}. \ \mathsf{P}^* = \mathsf{P}_1 \cup \mathsf{P}_2 \cup \mathsf{P}_3.$

B. P_i is a partition of I_i for each index i = 1, 2, 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

C. $gap(P^*) < gap(P)$.

D. **A** and **B**.

*E. A, B, and C.

Question 5 Given $f : [a, b] \to \mathbb{R}$ bounded and $P \subseteq P^*$ partitions of [a, b].

- A. P^* is a refinement of P.
- B. $L(f, P^*) = L(f, P)$ and $U(f, P^*) = U(f, P)$.
- C. $L(f, P^*) \ge L(f, P)$ and $U(f, P^*) \le U(f, P)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- D. A and B.
- *E. **A** and **C**.