Math 142B August 8, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given P a partition of [a, b]. P^* is a refinement of P if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A.
$$P^* \supseteq P$$
.

- B. P^* is a partition of P.
- C. P^* is a partition of [a, b].
- D. **A** and **B**.
- *E. **A** and **C**.

Question 2 Given $f : [a, b] \to \mathbb{R}$ bounded, *P* a partition of [a, b], and P^* a refinement of *P*. The refinement lemma asserts that

*A.
$$L(f, P) \le L(f, P^*) \le U(f, P^*) \le U(f, P)$$
.
B. $L(f, P^*) \le L(f, P) \le U(f, P) \le U(f, P^*)$.
C. $L(f, P) \le L(f, P^*)$ and $U(f, P) \le U(f, P^*)$.
D. $L(f, P^*) \le L(f, P)$ and $U(f, P^*) \le U(f, P)$.
E. None of the above

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

E. None of the above.

Question 3 Given $P = \{x_0, x_1, \dots, x_{n-1}, x_n\}$ a partition of [a, b]. The gap of P is defined by:

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = - のへぐ

*A.
$$gap(P) = \max_{1 \le i \le n} (x_i - x_{i-1}).$$

B. $gap(P) = \min_{1 \le i \le n} (x_i - x_{i-1}).$
C. $gap(P) = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{i-1}).$
D. $gap(P) = \frac{b-a}{n}.$

E. C and D; they are the same.

Question 4 Given $f : [a, b] \rightarrow \mathbb{R}$.

A. $\int_{a}^{b} f$ and $\int_{a}^{\bar{b}} f$ both exist if and only if f is bounded. B. $\int_{a}^{b} f$ is undefined if f is not bounded below. C. $\int_{\bar{a}}^{\bar{b}} f$ is undefined if f is not bounded above. *D. **A**, **B**, and **C**.

E. None of the above:
$$\int_{a} f$$
 and $\int_{a} f$ always exist

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 5 Recall Dirichlet's function $f : [0,1] \rightarrow \mathbb{R}$ defined by

$$f(x) = egin{cases} 0 & ext{if } x \in \mathbb{Q}, \ 1 & ext{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

A. *f* is integrable because
$$\int_{a}^{b} f$$
 and $\int_{a}^{\overline{b}} f$ both exist.

B. f is integrable because f is bounded.

- C. A and B; they are equivalent.
- D. f is not integrable because f is not continuous.

*E.
$$f$$
 is not integrable because $\int_{a}^{b} f \neq \int_{a}^{\overline{b}} f$.