Math 142B
August 8, 2018

Question 1 Given P a partition of $[a, b] . P^{*}$ is a refinement of P if
A. $P^{*} \supseteq P$.
B. P^{*} is a partition of P.
C. P^{*} is a partition of $[a, b]$.
D. A and B.
*E. A and C.

Question 2 Given $f:[a, b] \rightarrow \mathbb{R}$ bounded, P a partition of $[a, b]$, and P^{*} a refinement of P. The refinement lemma asserts that

$$
\begin{aligned}
& \text { *A. } L(f, P) \leq L\left(f, P^{*}\right) \leq U\left(f, P^{*}\right) \leq U(f, P) . \\
& \text { B. } L\left(f, P^{*}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P^{*}\right) . \\
& \text { C. } L(f, P) \leq L\left(f, P^{*}\right) \text { and } U(f, P) \leq U\left(f, P^{*}\right) . \\
& \text { D. } \quad L\left(f, P^{*}\right) \leq L(f, P) \text { and } U\left(f, P^{*}\right) \leq U(f, P) .
\end{aligned}
$$

E. None of the above.

Question 3 Given $P=\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ a partition of $[a, b]$. The gap of P is defined by:
*A. $\operatorname{gap}(P)=\max _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)$.
B. $\operatorname{gap}(P)=\min _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)$.
C. $\operatorname{gap}(P)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)$.
D. $\operatorname{gap}(P)=\frac{b-a}{n}$.
E. C and D; they are the same.

Question 4 Given $f:[a, b] \rightarrow \mathbb{R}$.
A. $\int_{a}^{b} f$ and $\int_{a}^{b} f$ both exist if and only if f is bounded.
B. $\int_{a}^{b} f$ is undefined if f is not bounded below.
C. $\int_{a}^{b} f$ is undefined if f is not bounded above.
*D. A, B, and C.
E. None of the above: $\int_{a}^{b} f$ and $\int_{a}^{b} f$ always exist.

Question 5 Recall Dirichlet's function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ 1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

A. f is integrable because $\int_{a}^{b} f$ and $\int_{a}^{b} f$ both exist.
B. f is integrable because f is bounded.
C. A and \mathbf{B}; they are equivalent.
D. f is not integrable because f is not continuous.
*E. f is not integrable because $\int_{a}^{b} f \neq \int_{a}^{b} f$.

