Math 142B August 9, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 A function $f : [a, b] \to \mathbb{R}$ is uniformly continuous provided that

- *A. whenever $\{u_n\}$ and $\{v_n\}$ are sequences in [a, b] such that $\lim_{n \to \infty} [u_n v_n] = 0$, then $\lim_{n \to \infty} [f(u_n) f(v_n)] = 0$.
 - B. whenever $\{u_n\}$ is a sequence in [a, b] such that $\lim_{n \to \infty} u_n = u_0$, then $\lim_{n \to \infty} f(u_n) = f(u_0)$.
 - C. whenever $\{u_n\}$ is a sequence in [a, b] such that $\lim_{n \to \infty} u_n = u_0, \text{ then } \lim_{n \to \infty} \frac{f(u_n) - f(u_0)}{u_n - u_0} = f'(u_0).$
 - D. All of the above.
 - E. None of the above. Continuity is never uniform.

A D N A 目 N A E N A E N A B N A C N

Question 2 The proof that $\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f$ uses the fact that for $\alpha < 0$ and any partition P of [a, b],

$$U(\alpha f, P) = \alpha L(f, P)$$
 and $L(\alpha f, P) = \alpha U(f, P)$.

This is true because, on any interval *I*,

A.
$$\sup \{-f(x) \mid x \in I\} = -\inf \{f(x) \mid x \in I\}.$$

B. $\inf \{-f(x) \mid x \in I\} = -\sup \{f(x) \mid x \in I\}.$
C. $\sup \{\alpha f(x) \mid x \in I\} = \alpha \inf \{f(x) \mid x \in I\}$ for all $\alpha < 0$.
D. $\inf \{\alpha f(x) \mid x \in I\} = \alpha \sup \{f(x) \mid x \in I\}$ for all $\alpha < 0$.
*E. All of the above.

Question 3 The proof that $\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$ uses the fact that $U(f+g,P) \leq U(f,P) + U(g,P)$ for any partition P of [a,b]. This is true because, on any interval I,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A.
$$f(x) + g(x) \leq \sup_{x \in I} f + \sup_{x \in I} g$$

B.
$$\sup_{x \in I} (f+g) \leq \sup_{x \in I} f + \sup_{x \in I} g$$

- *C. A and B; after all, A implies B.
- D. $\sup_{x\in I}(-f) = -\inf_{x\in I} f.$
- E. None of the above.

Question 4 The Archimedes-Riemann Theorem asserts that $f : [a, b] \rightarrow \mathbb{R}$ is integrable if and only if

*A. there is a sequence of partitions $\{P_n\}$ of [a, b] with $\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$

$$\mathsf{B.} \ \int_{a}^{b} f = \int_{a}^{\overline{b}} f.$$

C. f is monotonically increasing or monotonically decreasing on [a, b].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- D. f is continuous on [a, b].
- E. All of the above.

Question 5 Given $f : [a, b] \to \mathbb{R}$ bounded, *P* a partition of [a, b], and P^* a refinement of *P*. The refinement lemma asserts that

A.
$$L(f, P^*) \le L(f, P)$$
 and $U(f, P^*) \le U(f, P)$.
B. $L(f, P) \le L(f, P^*)$ and $U(f, P) \le U(f, P^*)$.
C. $L(f, P^*) \le L(f, P) \le U(f, P) \le U(f, P^*)$.
D. $L(f, P) \le L(f, P^) \le U(f, P^*) \le U(f, P)$.

・ロト・日本・ヨト・ヨー うへの

E. None of the above.