Math 142B August 13, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given $f : [a, b] \to \mathbb{R}$ bounded. Let $\alpha := \inf_{x \in [a, b]} \{f(x)\}$. Which of the following statements are false?

*A. There is a point $x_0 \in [a, b]$ at which $f(x_0) = \alpha$. B. $\alpha \cdot [b-a] \leq L(f, P)$ for every partition P of [a, b]. C. $\alpha \cdot [b-a] \leq \int_{a}^{b} f$.

- D. None of the above; they're all true.
- E. All of the above; they're all false.

Question 2 Given $f : [a, b] \to \mathbb{R}$ bounded. Let $\beta := \sup_{x \in [a, b]} \{f(x)\}$. Which of the following statements are false?

A.
$$f(x) \leq \beta$$
 for every $x \in [a, b]$.
B. $U(f, P) \leq \beta \cdot [b - a]$ for every partition P of $[a, b]$.
C. $\int_{a}^{\overline{b}} f \leq \alpha \cdot [b - a]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

*D. None of the above; they're all true.

E. All of the above; they're all false.

Question 3 Given $f : [a, b] \to \mathbb{R}$ continuous and $f : (a, b) \to \mathbb{R}$ differentiable. Then,

A. There is a point
$$x_0 \in (a, b)$$
 at which $f'(x_0) = \frac{f(b) - f(a)}{b - a}$.

B. $f : [a, b] \to \mathbb{R}$ is integrable.

C.
$$f': (a, b) \to \mathbb{R}$$
 is continuous.

*D. \mathbf{A} and \mathbf{B} .

E. A, B, and C.

Question 4 The Archimedes-Riemann Theorem asserts that $f : [a, b] \rightarrow \mathbb{R}$ is integrable if and only if

*A. there is a sequence of partitions $\{P_n\}$ of [a, b] with $\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$

$$\mathsf{B.} \ \int_{a}^{b} f = \int_{a}^{\overline{b}} f.$$

C. f is monotonically increasing or monotonically decreasing on [a, b].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- D. f is continuous on [a, b].
- E. All of the above.

Question 5 A function $f : [a, b] \to \mathbb{R}$ is uniformly continuous provided that

- *A. whenever $\{u_n\}$ and $\{v_n\}$ are sequences in [a, b] such that $\lim_{n \to \infty} [u_n v_n] = 0$, then $\lim_{n \to \infty} [f(u_n) f(v_n)] = 0$.
 - B. whenever $\{u_n\}$ is a sequence in [a, b] such that $\lim_{n \to \infty} u_n = u_0$, then $\lim_{n \to \infty} f(u_n) = f(u_0)$.

C. whenever
$$\{u_n\}$$
 is a sequence in $[a, b]$ such that

$$\lim_{n \to \infty} u_n = u_0, \text{ then } \lim_{n \to \infty} \frac{f(u_n) - f(u_0)}{u_n - u_0} = f'(u_0).$$

- D. All of the above.
- E. None of the above. Continuity is never uniform.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00