Math 142B August 14, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given $f : [a, b] \to \mathbb{R}$ continuous on [a, b] and differentiable on (a, b). Which of the following conditions imply that $\int_{a}^{b} f' = f(b) - f(a)?$

A. $f': (a, b) \to \mathbb{R}$ is bounded.

- B. $f': (a, b) \to \mathbb{R}$ is bounded and continuous.
- C. Every extension of f' to [a, b] is integrable.

- D. Both A and C; after all, A implies C.
- *E. Both **B** and **C**; after all, **B** implies **C**.

Question 2 Consider the function $f : [0,1] \to \mathbb{R}$ given by $f(x) = e^{-x^2}$. We can say that

A. f is integrable because f is continuous.

B.
$$\int_0^1 f = F(1) - F(0)$$
 for any function that satisfies $F'(x) = f(x)$.

C. f does not satisfy the hypothesis of the First Fundamental Theorem because there is no function $F : (0,1) \to \mathbb{R}$ for which F'(x) = f(x).

- *D. **A** and **B**.
 - E. A and C.

Question 3 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ a sequence of partitions of [a, b]. Then,

A.
$$U(f, P_n) - L(f, P_n) \ge \int_a^{\overline{f}b} f - \int_a^b f \ge 0$$
 for every index *n*.

- B. $\lim_{n \to \infty} \left[U(f, P_n) L(f, P_n) \right] = 0$ implies f is integrable.
- C. $\lim_{n\to\infty} \left[U(f,P_n) L(f,P_n) \right] = 0 \text{ implies } \lim_{n\to\infty} \operatorname{gap} \left(P_n \right) = 0.$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- *D. **A** and **B**.
 - **E**. **A**, **B**, and **C**.

Question 4 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ a sequence of partitions of [a, b]. If $\lim_{n \to \infty} \operatorname{gap}(P_n) = 0$, then

- A. P_{n+1} is a refinement of P_n for every index n.
- B. $\{P_n\}$ is an Archimedean sequence of partitions for f on [a, b].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- C. f is integrable.
- D. **B** and **C**; they are equivalent.
- *E. None of the above.

Question 5 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ an Archimedean sequence of partitions for f on [a, b]. Then,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- A. $\lim_{n\to\infty} \left[U(f,P_n) L(f,P_n) \right] = 0.$
- B. f is integrable.
- C. $\lim_{n\to\infty} \operatorname{gap}(P_n) = 0.$
- *D. **A** and **B**.
 - E. A, B, and C.