Math 142B August 15, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given $f : [0,2] \to \mathbb{R}$ bounded. Let $P_0 = \{0,2\}$ and $P_1 = \{0,1,2\}$. Then,

A. P_1 is a refinement of P_0 .

B. $L(f, P_0) \le L(f, P_1)$ because $\inf_{x \in [0,2]} f(x) \le \inf_{x \in [0,1]} f(x)$ and $\inf_{x \in [0,2]} f(x) \le \inf_{x \in [1,2]} f(x).$

C. $U(f, P_1) \le U(f, P_0)$ because $\sup_{x \in [0,1]} f(x) \le \sup_{x \in [0,2]} f(x)$ and $\sup_{x \in [1,2]} f(x) \le \sup_{x \in [0,2]} f(x)$.

*D. All of the above.

E. None of the above.

Question 2 Given $f : [a, b] \to \mathbb{R}$ bounded. Then $\sup_{\text{partitions } P} L(f, P)$ is called

*A.
$$\int_{a}^{b} f$$
, the lower integral of f on $[a, b]$.
B. $\int_{a}^{\overline{b}} f$, the upper integral of f on $[a, b]$.
C. $\int_{a}^{b} f$, the integral of f on $[a, b]$.

D. All of the above; they are the same when f is integrable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

E. None of the above; not much can be said when f is merely bounded.

Question 3 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ an Archimedean sequence of partitions for f on [a, b]. Then,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A.
$$\lim_{n \to \infty} U(f, P_n) = \inf_{\text{partitions } P} U(f, P).$$

B.
$$\lim_{n \to \infty} L(f, P_n) = \sup_{\text{partitions } P} L(f, P).$$

C.
$$\int_a^b f = \int_a^b f.$$

D. *f* is integrable.

*E. All of the above.

Question 4 Given $f : [a, b] \to \mathbb{R}$ monotone; that is, monotonically increasing or monotonically decreasing. We can say that

- A. *f* is bounded.
- B. f is integrable.
- C. The sequence $\{P_n\}$ of the n^{th} regular partitions of [a, b] form an Archimedean sequence of partitions for f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- D. **A** and **B**.
- *E. A, B, and C.

Question 5 Given $f : [a, b] \to \mathbb{R}$ continuous on [a, b] and differentiable on (a, b). Which of the following conditions imply that $\int_{a}^{b} f' = f(b) - f(a)?$

A. $f': (a, b) \to \mathbb{R}$ is bounded.

B. $f': (a, b) \to \mathbb{R}$ is bounded and continuous.

C. Every extension of f' to [a, b] is integrable.

- D. Both A and C; after all, A implies C.
- *E. Both **B** and **C**; after all, **B** implies **C**.

Question 6 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ a sequence of partitions of [a, b]. Then,

A.
$$U(f, P_n) - L(f, P_n) \ge \int_a^{\overline{f}b} f - \int_a^b f \ge 0$$
 for every index *n*.

- B. $\lim_{n \to \infty} \left[U(f, P_n) L(f, P_n) \right] = 0$ implies f is integrable.
- C. $\lim_{n\to\infty} \left[U(f,P_n) L(f,P_n) \right] = 0 \text{ implies } \lim_{n\to\infty} \operatorname{gap} \left(P_n \right) = 0.$

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

- *D. **A** and **B**.
 - **E**. **A**, **B**, and **C**.

Question 7 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ a sequence of partitions of [a, b]. If $\lim_{n \to \infty} gap(P_n) = 0$, then

- A. P_{n+1} is a refinement of P_n for every index n.
- B. $\{P_n\}$ is an Archimedean sequence of partitions for f on [a, b].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- C. f is integrable.
- D. **B** and **C**; they are equivalent.
- *E. None of the above.

Question 8 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ an Archimedean sequence of partitions for f on [a, b]. Then,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A. $\lim_{n\to\infty} \left[U(f,P_n) L(f,P_n) \right] = 0.$
- B. f is integrable.
- C. $\lim_{n\to\infty} \operatorname{gap}(P_n) = 0.$
- *D. **A** and **B**.
 - E. A, B, and C.