Math 142B
 August 20, 2018

Question 1 Rolle's Theorem asserts that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous with $f(a)=f(b)$ and its restriction $f:(a, b) \rightarrow \mathbb{R}$ is differentiable, then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=0$.
Which of the following statements does the proof of Rolle's Theorem depend on?
A. f attains both its extreme values (maximum and minimum) on $[a, b]$.
B. If f attains an extreme value at $x_{0} \in(a, b)$, then $f^{\prime}\left(x_{0}\right)=0$.
C. If f attains its extreme values at both a and b, then f is the constant function identically equal to $f(a)=f(b)$.
*D. A, B, and C.
*E. \mathbf{A} and $\mathbf{B} ; \mathbf{C}$ is not necessary since the derivative of a constant function is 0 for all x.
[Note: \mathbf{D} is perhaps the best choice, but an argument can be made for \mathbf{E}.]

Question 2 The Mean Value Theorem asserts that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and its restriction $f:(a, b) \rightarrow \mathbb{R}$ is differentiable, then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$.
The Mean Value Theorem can be proved by
*A. applying Rolle's Theorem to

$$
g(x)=f(x)-f(a)-m(x-a) \text { with } m:=\frac{f(b)-f(a)}{b-a} .
$$

B. applying the Extreme Value Theorem to find a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)$ has an extreme value.
C. applying the Mean Value Theorem for integrals to find x_{0} so that $f\left(x_{0}\right)=\frac{1}{b-a} \int_{a}^{b} f$.
D. All of the above; \mathbf{A}, \mathbf{B}, and \mathbf{C} are all part of the proof of the Mean Value Theorem.
E. None of the above; the Mean Value Theorem only applies to differentiable functions $f:[a, b] \rightarrow \mathbb{R}$.

Question 3 The Cauchy Mean Value Theorem asserts that if $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous and their restrictions $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable with $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{g(b)-g(a)}$.
The Cauchy Mean Value Theorem can be proved by
*A. applying Rolle's Theorem to $h(x)=f(x)-m g(x)$ with the constant $m:=\frac{f(b)-f(a)}{g(b)-g(a)}$.
B. applying the Mean Value Theorem to $h(x)=\frac{f(x)-f(a)}{g(x)-g(a)}$.
C. applying the Extreme Value Theorem to $h(x)=\frac{f(x)}{g(x)}$ in order to find a point x_{0} at which $h^{\prime}\left(x_{0}\right)=0$.
D. all of the above; the Cauchy Mean Value Theorem can be proved in many ways.
E. none of the above; Cauchy had nothing to do with the Mean Value Theorem.

Question 4 Given a function $f:[a, b] \rightarrow \mathbb{R}$. We can say that
A. if f is bounded, then f must have both a maximum and a minimum.
B. if f is bounded, then f must have either a maximum or a minimum.
C. if f is a constant function, then f has neither a maximum nor a minimum.
*D. f need not attain a maximum or a minimum.
E. C and D.

Question 5 Which of the following functions are properly defined?
A. $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=\sin \left(\frac{\pi}{1-x}\right)$.
B. $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=\log (x)$.
C. $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=\tan (\pi x)$.
D. All of the above; they are all familiar functions from calculus.
*E. None of the above: These functions are all pure balderdash; that is, they are pure nonsense.

Question 6 Given a function $f:[a, b] \rightarrow \mathbb{R}$. Then,
A. if f is bounded, then f is continuous.
B. if f is monotonically increasing then f is continuous.
C. if f is not continuous, then f is not integrable.
D. if f is integrable, then f is continuous.
*E. None of the above: all the above statements are pure malarkey; that is, they are pure nonsense.

