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Question 1 The Mean Value Theorem asserts that if f : [a, b]→ R is
continuous and its restriction f : (a, b)→ R is differentiable, then there is

a point x0 ∈ (a, b) at which f ′(x0) =
f (b)− f (a)

b − a
.

The Mean Value Theorem can be proved by

∗A. applying Rolle’s Theorem to

g(x) = f (x)− f (a)−m(x − a) with m := f (b)−f (a)
b−a .

B. applying the Extreme Value Theorem to find a point
x0 ∈ (a, b) at which f ′(x0) has an extreme value.

C. applying the Mean Value Theorem for integrals to find x0

so that f (x0) =
1

b − a

∫ b

a

f .

D. All of the above; A, B, and C are all part of the proof of
the Mean Value Theorem.

E. None of the above; the Mean Value Theorem only applies
to differentiable functions f : [a, b]→ R.



Question 2 The Cauchy Mean Value Theorem asserts that if
f , g : [a, b]→ R are continuous and their restrictions f , g : (a, b)→ R
are differentiable with g ′(x) 6= 0 for all x ∈ (a, b), then there is a point

x0 ∈ (a, b) at which f ′(x0) = f (b)−f (a)
g(b)−g(a) .

The Cauchy Mean Value Theorem can be proved by

∗A. applying Rolle’s Theorem to h(x) = f (x)−mg(x) with

the constant m := f (b)−f (a)
g(b)−g(a) .

B. applying the Mean Value Theorem to h(x) = f (x)−f (a)
g(x)−g(a) .

C. applying the Extreme Value Theorem to h(x) = f (x)
g(x) in

order to find a point x0 at which h′(x0) = 0.

D. all of the above; the Cauchy Mean Value Theorem can be
proved in many ways.

E. none of the above; Cauchy had nothing to do with the
Mean Value Theorem.



Question 3 Given a neighborhood I of x0, n a nonnegative integer, and
a function f : I → R with n + 1 derivatives such that f (k)(x0) = 0 for
0 ≤ k ≤ n. Then for each x 6= x0 in I , there is a c strictly between x and

x0 at which f (x) = f (n+1)(c)
(n+1)! (x − x0)n+1.

This statement

A. can be proven by applying the Cauchy Mean Value
Theorem inductively to f (k)(x) and g (k)(x) for 0 ≤ k ≤ n,
starting with f (x) and g(x) = (x − x0)n.

B. is a special case of the Lagrange Remainder Theorem
since pn(x) = 0 is the nth Taylor polynomial for f at x0.

C. immediately implies the Lagrange Remainder Theorem
since Rn(x) = f (x)− pn(x) has contact of order n with
the constant function 0.

D. A and B.

∗E. A, B, and C.



Question 4 Let f : R→ R be the exponential function f (x) = ex .
Then,

A. The nth Taylor polynomial for f at x = 0 is

pn(x) =
n∑

k=0

1

k!
xk = 1 +

1

2
+ · · ·+ 1

n!
xn.

B. f (k)(0) = p(k)n (0) for 0 ≤ k ≤ n.

C. lim
n→∞

pn(x) = f (x) for every x .

D. A and B.

∗E. A, B, and C.



Question 5 Let Hn :=
n∑

k=1

1

k
= 1 +

1

2
+ · · ·+ 1

n
be the nth harmonic

number. Then,

A. lim
n→∞

Hn =∞.

B. {cn}, where cn = Hn − log(n + 1), is monotonically
increasing and bounded above by 1.

C. lim
n→∞

cn = γ, where cn = Hn − log(n + 1) and γ ≤ 1 is

called Euler’s constant.

D. B and C.

∗E. A, B, and C.



Question 6 Given x0 ∈ R and f : R→ R with derivatives of all orders.

Then pn(x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)m is the nth Taylor polynomial for f at

x0, and

A. pn has contact of order n with f at x0.

B. f (x)− pn(x) = f (n+1)(c)
(n+1)! (x − x0)n+1 for some c strictly

between x and x0.

C. lim
n→∞

pn(x) = f (x) for every x .

∗D. A and B.

E. A, B, and C.


