Math 142B
 August 21, 2018

Question 1 The Mean Value Theorem asserts that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and its restriction $f:(a, b) \rightarrow \mathbb{R}$ is differentiable, then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$.
The Mean Value Theorem can be proved by
*A. applying Rolle's Theorem to

$$
g(x)=f(x)-f(a)-m(x-a) \text { with } m:=\frac{f(b)-f(a)}{b-a} .
$$

B. applying the Extreme Value Theorem to find a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)$ has an extreme value.
C. applying the Mean Value Theorem for integrals to find x_{0} so that $f\left(x_{0}\right)=\frac{1}{b-a} \int_{a}^{b} f$.
D. All of the above; \mathbf{A}, \mathbf{B}, and \mathbf{C} are all part of the proof of the Mean Value Theorem.
E. None of the above; the Mean Value Theorem only applies to differentiable functions $f:[a, b] \rightarrow \mathbb{R}$.

Question 2 The Cauchy Mean Value Theorem asserts that if $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous and their restrictions $f, g:(a, b) \rightarrow \mathbb{R}$ are differentiable with $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{g(b)-g(a)}$.
The Cauchy Mean Value Theorem can be proved by
*A. applying Rolle's Theorem to $h(x)=f(x)-m g(x)$ with the constant $m:=\frac{f(b)-f(a)}{g(b)-g(a)}$.
B. applying the Mean Value Theorem to $h(x)=\frac{f(x)-f(a)}{g(x)-g(a)}$.
C. applying the Extreme Value Theorem to $h(x)=\frac{f(x)}{g(x)}$ in order to find a point x_{0} at which $h^{\prime}\left(x_{0}\right)=0$.
D. all of the above; the Cauchy Mean Value Theorem can be proved in many ways.
E. none of the above; Cauchy had nothing to do with the Mean Value Theorem.

Question 3 Given a neighborhood I of x_{0}, n a nonnegative integer, and a function $f: I \rightarrow \mathbb{R}$ with $n+1$ derivatives such that $f^{(k)}\left(x_{0}\right)=0$ for $0 \leq k \leq n$. Then for each $x \neq x_{0}$ in I, there is a c strictly between x and x_{0} at which $f(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$.
This statement
A. can be proven by applying the Cauchy Mean Value Theorem inductively to $f^{(k)}(x)$ and $g^{(k)}(x)$ for $0 \leq k \leq n$, starting with $f(x)$ and $g(x)=\left(x-x_{0}\right)^{n}$.
B. is a special case of the Lagrange Remainder Theorem since $p_{n}(x)=0$ is the $n^{\text {th }}$ Taylor polynomial for f at x_{0}.
C. immediately implies the Lagrange Remainder Theorem since $R_{n}(x)=f(x)-p_{n}(x)$ has contact of order n with the constant function 0 .
D. A and B.
*E. A, B, and C.

Question 4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the exponential function $f(x)=e^{x}$. Then,
A. The $n^{\text {th }}$ Taylor polynomial for f at $x=0$ is

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}=1+\frac{1}{2}+\cdots+\frac{1}{n!} x^{n} .
$$

B. $f^{(k)}(0)=p_{n}^{(k)}(0)$ for $0 \leq k \leq n$.
C. $\lim _{n \rightarrow \infty} p_{n}(x)=f(x)$ for every x.
D. A and B.
*E. A, B, and C.

Question 5 Let $H_{n}:=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ be the $n^{\text {th }}$ harmonic number. Then,
A. $\lim _{n \rightarrow \infty} H_{n}=\infty$.
B. $\left\{c_{n}\right\}$, where $c_{n}=H_{n}-\log (n+1)$, is monotonically increasing and bounded above by 1 .
C. $\lim _{n \rightarrow \infty} c_{n}=\gamma$, where $c_{n}=H_{n}-\log (n+1)$ and $\gamma \leq 1$ is called Euler's constant.
D. B and C.
*E. A, B, and C.

Question 6 Given $x_{0} \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ with derivatives of all orders. Then $p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{m}$ is the $n^{\text {th }}$ Taylor polynomial for f at x_{0}, and
A. p_{n} has contact of order n with f at x_{0}.
B. $f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$ for some c strictly between x and x_{0}.
C. $\lim _{n \rightarrow \infty} p_{n}(x)=f(x)$ for every x.
*D. A and B.
E. A, B, and C.

