Math 142B August 22, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given a neighborhood *I* of x_0 , *n* a nonnegative integer, and a function $f: I \to \mathbb{R}$ with n + 1 derivatives such that $f^{(k)}(x_0) = 0$ for $0 \le k \le n$. Then for each $x \ne x_0$ in *I*, there is a *c* strictly between *x* and x_0 at which $f(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$. This statement

- A. can be proven by applying the Cauchy Mean Value Theorem inductively to $f^{(k)}(x)$ and $g^{(k)}(x)$ for $0 \le k \le n$, starting with f(x) and $g(x) = (x - x_0)^n$.
- B. is a special case of the Lagrange Remainder Theorem since $p_n(x) = 0$ is the n^{th} Taylor polynomial for f at x_0 .
- C. immediately implies the Lagrange Remainder Theorem since $R_n(x) = f(x) p_n(x)$ has contact of order *n* with the constant function 0.

D. **A** and **B**.

*E. A, B, and C.

Question 2 Let $H_n := \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ be the n^{th} harmonic number, and let $c_n = H_n - \log(n+1)$. Then,

- A. $c_n > 0$ for every index n.
- B. $\{c_n\}$ is monotonically increasing and bounded above by 1.

A D N A 目 N A E N A E N A B N A C N

- C. $\lim_{n \to \infty} c_n = \gamma$, where $\gamma \leq 1$ is called Euler's constant.
- D. **B** and **C**.
- *E. A, B, and C.

Question 3 Given a neighborhood I of a point x_0 and an infinitely differentiable function $f: I \to \mathbb{R}$. Then, $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ for every $x \in I$ whenever

- A. $\lim_{n\to\infty} [f(x) p_n(x)] \to 0$ for every $x \in I$, where p_n is the n^{th} Taylor polynomial for f at x_0 .
- B. There is an M > 0 for which $|f^{(k)}(x)| \le M^k$ for every $x \in I$ and every index k.

C.
$$\lim_{n \to \infty} \frac{f^{(n+1)}(x)}{(n+1)!} (x - x_0)^{n+1} = 0$$
 for every $x \in I$.

*D. **A** and **B**.

E. A, B, and C.

[Note: Whether or not C is true is a Math 142B open question.]

Question 4 $p_n(x) = \sum_{k=0}^n x^k$ is the *n*th Taylor polynomial at x = 0 for $f: (-1,1) \to \mathbb{R}$ given by $f(x) = \frac{1}{1-x}$. Moreover, $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$ for every index *n*. We can say that $f(x) = \sum_{k=0}^{\infty} x^k$ for all $x \in (-1,1)$ because

*A.
$$\lim_{n\to\infty} [f(x) - p_n(x)] = 0$$
 for every $x \in (-1, 1)$.

B. There is some M > 0 for which $\left| f^{(n)}(x) \right| \le M^n$ for all $x \in (-1, 1).$

C.
$$\lim_{n \to \infty} \frac{f^{(n+1)}(x)}{(n+1)!} (x - x_0)^{n+1} = 0$$
 for every $x \in (-1, 1)$.

D. All of the above.

E. None of the above.

[Note: Since $\lim_{x\to 1^-} f^{(k)}(x) = +\infty$ for every index k, **B** and **C** need to be stated more precisely before we can conclude that they're true.]

Question 5 Given a function $f : [a, b] \to \mathbb{R}$. We can say that

- A. if f is bounded, then f must have both a maximum and a minimum.
- B. if f is bounded, then f must have either a maximum or a minimum.
- C. if f is a constant function, then f has neither a maximum nor a minimum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- *D. f need not attain a maximum or a minimum.
 - E. C and D.

Question 6 Given a function $f : [a, b] \to \mathbb{R}$. Then,

- A. if f is bounded, then f is continuous.
- B. if f is monotonically increasing then f is continuous.
- C. if f is not continuous, then f is not integrable.
- D. if f is integrable, then f is continuous.
- *E. None of the above: all the above statements are false.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・