Math 142B
 August 22, 2018

Question 1 Given a neighborhood I of x_{0}, n a nonnegative integer, and a function $f: I \rightarrow \mathbb{R}$ with $n+1$ derivatives such that $f^{(k)}\left(x_{0}\right)=0$ for $0 \leq k \leq n$. Then for each $x \neq x_{0}$ in I, there is a c strictly between x and x_{0} at which $f(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$.
This statement
A. can be proven by applying the Cauchy Mean Value Theorem inductively to $f^{(k)}(x)$ and $g^{(k)}(x)$ for $0 \leq k \leq n$, starting with $f(x)$ and $g(x)=\left(x-x_{0}\right)^{n}$.
B. is a special case of the Lagrange Remainder Theorem since $p_{n}(x)=0$ is the $n^{\text {th }}$ Taylor polynomial for f at x_{0}.
C. immediately implies the Lagrange Remainder Theorem since $R_{n}(x)=f(x)-p_{n}(x)$ has contact of order n with the constant function 0 .
D. A and B.
*E. A, B, and C.

Question 2 Let $H_{n}:=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ be the $n^{\text {th }}$ harmonic number, and let $c_{n}=H_{n}-\log (n+1)$. Then,
A. $c_{n}>0$ for every index n.
B. $\left\{c_{n}\right\}$ is monotonically increasing and bounded above by 1 .
C. $\lim _{n \rightarrow \infty} c_{n}=\gamma$, where $\gamma \leq 1$ is called Euler's constant.
D. B and C.
*E. A, B, and C.

Question 3 Given a neighborhood / of a point x_{0} and an infinitely differentiable function $f: I \rightarrow \mathbb{R}$. Then, $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ for every $x \in I$ whenever
A. $\lim _{n \rightarrow \infty}\left[f(x)-p_{n}(x)\right] \rightarrow 0$ for every $x \in I$, where p_{n} is the $n^{\text {th }}$ Taylor polynomial for f at x_{0}.
B. There is an $M>0$ for which $\left|f^{(k)}(x)\right| \leq M^{k}$ for every $x \in I$ and every index k.
C. $\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(x)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=0$ for every $x \in I$.
*D. A and B.
E. A, B, and C.
[Note: Whether or not C is true is a Math 142B open question.]

Question $4 p_{n}(x)=\sum_{k=0}^{n} x^{k}$ is the $n^{\text {th }}$ Taylor polynomial at $x=0$ for $f:(-1,1) \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{1-x}$. Moreover, $f^{(n)}(x)=\frac{n!}{(1-x)^{n+1}}$ for every index n. We can say that $f(x)=\sum_{k=0}^{\infty} x^{k}$ for all $x \in(-1,1)$ because
*A. $\lim _{n \rightarrow \infty}\left[f(x)-p_{n}(x)\right]=0$ for every $x \in(-1,1)$.
B. There is some $M>0$ for which $\left|f^{(n)}(x)\right| \leq M^{n}$ for all $x \in(-1,1)$.
C. $\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(x)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=0$ for every $x \in(-1,1)$.
D. All of the above.
E. None of the above.
[Note: Since $\lim _{x \rightarrow 1^{-}} f^{(k)}(x)=+\infty$ for every index k, \mathbf{B} and \mathbf{C} need to be stated more precisely before we can conclude that they're true.]

Question 5 Given a function $f:[a, b] \rightarrow \mathbb{R}$. We can say that
A. if f is bounded, then f must have both a maximum and a minimum.
B. if f is bounded, then f must have either a maximum or a minimum.
C. if f is a constant function, then f has neither a maximum nor a minimum.
*D. f need not attain a maximum or a minimum.
E. C and D.

Question 6 Given a function $f:[a, b] \rightarrow \mathbb{R}$. Then,
A. if f is bounded, then f is continuous.
B. if f is monotonically increasing then f is continuous.
C. if f is not continuous, then f is not integrable.
D. if f is integrable, then f is continuous.
*E. None of the above: all the above statements are false.

