Math 142B
 August 23, 2018

Question 1 We can write $f(x)=\log (1+x)$ in the form $f(x)=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^{k}+R_{n}(x)$. We can say that
A. $\lim _{n \rightarrow \infty} R_{n}(x)=0$.
B. $R_{n}(x)=\frac{(-1)^{n}}{k(1+c)^{n+1}} x^{n+1}$ for some c strictly between 0 and x.
C. $R_{n}(x)=\int_{1}^{1+x} \frac{(1-t)^{n}}{t} d t$.
D. All of the above.
*E. All of the above, provided $-1<x \leq 1$; otherwise, \mathbf{A} is false.

Question 2 Let I be a neighborhood of x_{0} and let $f: I \rightarrow \mathbb{R}$ be a function with $n+1$ derivatives. Then,

$$
f\left(x_{0}+h\right)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!} h^{k}+R_{n}(x),
$$

where the $n^{\text {th }}$ remainder $R_{n}(x)$ is equal to
A. $\frac{f^{(n+1)}(a)}{(n+1)!} h^{n+1}$ for some a strictly between x_{0} and $x_{0}+h$.
B. $\frac{f^{(n+1)}\left(x_{0}+b\right)}{(n+1)!} h^{n+1}$ for some b strictly between 0 and h.
C. $\frac{f^{(n+1)}(c)}{(n+1)!} h^{n+1}$ for some c strictly between x and x_{0}.
*D. A or B.
E. A, B, or C.
[Note: E would be true if x were defined to be $x:=x_{0}+h$.]

Question 3 A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable if and only if
A. $\int_{a}^{b} f=\int_{a}^{b} f$.
B. there is a sequence of partitions $\left\{P_{n}\right\}$ of $[a, b]$ with $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$.
C. for every $\varepsilon>0$ there is a corresponding partition P of $[a, b]$ for which $[U(f, P)-L(f, P)]<\varepsilon$
*D. All of the above; they are equivalent.
E. None of the above; not all bounded functions are integrable.

Question 4 Given $x_{0} \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ with derivatives of all orders. Then $p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ is the $n^{\text {th }}$ Taylor polynomial for f at $x=x_{0}$, and
A. p_{n} has contact of order n with f at x_{0}.
B. $f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$ for some c strictly between x and x_{0}.
C. $\lim _{n \rightarrow \infty} p_{n}(x)=f(x)$ for every x.
*D. A and B.
E. A, B, and C.

Question 5 Given $f:[a, b] \rightarrow \mathbb{R}$ bounded and $\left\{P_{n}\right\}$ a sequence of partitions of $[a, b]$. Then,
A. $U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \geq \int_{a}^{b} f-\int_{a}^{b} f \geq 0$ for every index n.
B. $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$ implies f is integrable.
C. $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$ implies $\lim _{n \rightarrow \infty} \operatorname{gap}\left(P_{n}\right)=0$.
*D. A and B.
E. A, B, and C.

Question 6 Given $f:[a, b] \rightarrow \mathbb{R}$ bounded and $P \subseteq P^{*}$ partitions of $[a, b]$.
A. P^{*} is a refinement of P.
B. $L\left(f, P^{*}\right)=L(f, P)$ and $U\left(f, P^{*}\right)=U(f, P)$.
C. $L\left(f, P^{*}\right) \geq L(f, P)$ and $U\left(f, P^{*}\right) \leq U(f, P)$.
D. A and B.
*E. A and C.

