Math 142B August 23, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 We can write $f(x) = \log(1+x)$ in the form $f(x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^k + R_n(x)$. We can say that

A.
$$\lim_{n\to\infty} R_n(x) = 0.$$

B. $R_n(x) = \frac{(-1)^n}{k(1+c)^{n+1}} x^{n+1}$ for some c strictly between 0 and x.

C.
$$R_n(x) = \int_1^{1+x} \frac{(1-t)^n}{t} dt$$

D. All of the above.

*E. All of the above, provided $-1 < x \le 1$; otherwise, **A** is false.

Question 2 Let *I* be a neighborhood of x_0 and let $f : I \to \mathbb{R}$ be a function with n + 1 derivatives. Then,

$$f(x_0 + h) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} h^k + R_n(x),$$

where the n^{th} remainder $R_n(x)$ is equal to

A. $\frac{f^{(n+1)}(a)}{(n+1)!} h^{n+1} \text{ for some } a \text{ strictly between } x_0 \text{ and } x_0 + h.$ B. $\frac{f^{(n+1)}(x_0 + b)}{(n+1)!} h^{n+1} \text{ for some } b \text{ strictly between 0 and } h.$ C. $\frac{f^{(n+1)}(c)}{(n+1)!} h^{n+1} \text{ for some } c \text{ strictly between } x \text{ and } x_0.$ *D. **A** or **B**. E. **A**, **B**, or **C**.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

[Note: **E** would be true if x were defined to be $x := x_0 + h$.]

Question 3 A bounded function $f : [a, b] \rightarrow \mathbb{R}$ is integrable if and only if

A.
$$\int_{a}^{b} f = \int_{a}^{b} f$$
.

- B. there is a sequence of partitions $\{P_n\}$ of [a, b] with $\lim_{n \to \infty} [U(f, P_n) L(f, P_n)] = 0.$
- C. for every $\varepsilon > 0$ there is a corresponding partition P of [a, b] for which $[U(f, P) L(f, P)] < \varepsilon$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- *D. All of the above; they are equivalent.
 - E. None of the above; not all bounded functions are integrable.

Question 4 Given $x_0 \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ with derivatives of all orders. Then $p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ is the n^{th} Taylor polynomial for f at $x = x_0$, and

A. p_n has contact of order n with f at x_0 .

B.
$$f(x) - p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$
 for some *c* strictly between *x* and x_0 .

C.
$$\lim_{n\to\infty} p_n(x) = f(x)$$
 for every x .

- *D. **A** and **B**.
 - **E**. **A**, **B**, and **C**.

Question 5 Given $f : [a, b] \to \mathbb{R}$ bounded and $\{P_n\}$ a sequence of partitions of [a, b]. Then,

A.
$$U(f, P_n) - L(f, P_n) \ge \int_a^{\overline{f}b} f - \int_a^b f \ge 0$$
 for every index *n*.

- B. $\lim_{n \to \infty} \left[U(f, P_n) L(f, P_n) \right] = 0$ implies f is integrable.
- C. $\lim_{n\to\infty} \left[U(f,P_n) L(f,P_n) \right] = 0 \text{ implies } \lim_{n\to\infty} \operatorname{gap} \left(P_n \right) = 0.$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- *D. **A** and **B**.
 - **E**. **A**, **B**, and **C**.

Question 6 Given $f : [a, b] \to \mathbb{R}$ bounded and $P \subseteq P^*$ partitions of [a, b].

- A. P^* is a refinement of P.
- B. $L(f, P^*) = L(f, P)$ and $U(f, P^*) = U(f, P)$.
- C. $L(f, P^*) \ge L(f, P)$ and $U(f, P^*) \le U(f, P)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- D. A and B.
- *E. A and C.