Math 142B
 August 27, 2018

Question 1 Given a neighborhood / of a point x_{0} and an infinitely differentiable function $f: I \rightarrow \mathbb{R}$. The First Fundamental Theorem asserts that $f(x)=f\left(x_{0}\right)+\int_{x_{0}}^{x} f^{\prime}(t) d t$. Then,
A. $\int_{x_{0}}^{x} f^{\prime}(t) d t=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\int_{x_{0}}^{x} f^{\prime \prime}(t)(x-t) d t$, after an integration by parts.
B. $\int_{x_{0}}^{x} f^{\prime \prime}(t)(x-t) d t$ is the $1^{\text {st }}$ Cauchy integral remainder for f at $x=x_{0}$.
C. $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is the $1^{\text {st }}$ Taylor polynomial for f at $x=x_{0}$.
D. B and \mathbf{C}.
*E. A, B, and C.

Question 2 Given a neighborhood $/$ of a point x_{0} and a function $f: I \rightarrow \mathbb{R}$ with $n+1$ derivatives. Let $p_{n}(x)$ be the $n^{\text {th }}$ Taylor polynomial for f at $x=x_{0}$. Then,
A. There is a c strictly between x and x_{0} at which

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

B. There is a c strictly between x and x_{0} at which

$$
\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

C. $\lim _{n \rightarrow \infty}\left\{\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}(t)(x-t)^{n} d t\right\}=0$.
*D. A and B.
E. A, B, and C.

Question 3 Given any number β. Define $f:(-1,1) \rightarrow \mathbb{R}$ by $f(x)=(1+x)^{\beta}$. Then,
*A. $f^{(k)}(x)=\beta(\beta-1) \cdots(\beta-k+1)(1+x)^{\beta-k}$.
B. $f(x)=\sum_{k=0}^{\infty} \frac{\beta(\beta-1) \cdots(\beta-k+1)}{k!}(1+x)^{\beta-k}$.
C. $f(x)=\sum_{k=0}^{\infty}\binom{\beta}{k}(1+x)^{\beta-k}$.
D. B and \mathbf{C}; they are the same since $\binom{\beta}{k}=\frac{\beta(\beta-1) \cdots(\beta-k+1)}{k!}$.
E. All of the above.

Question 4 Given $x_{0} \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ with derivatives of all orders. Then $p_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ is the $n^{\text {th }}$ Taylor polynomial for f at $x=x_{0}$, and
A. p_{n} has contact of order n with f at x_{0}.
B. $f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$ for some c strictly between x and x_{0}.
C. $\lim _{n \rightarrow \infty} p_{n}(x)=f(x)$ for every x.
*D. A and B.
E. A, B, and C.

Question 5 Given a neighborhood / of a point x_{0} and an infinitely differentiable function $f: I \rightarrow \mathbb{R}$. Then, $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ for every $x \in I$ whenever
A. $\lim _{n \rightarrow \infty}\left[f(x)-p_{n}(x)\right] \rightarrow 0$ for every $x \in I$, where p_{n} is the $n^{\text {th }}$ Taylor polynomial for f at x_{0}.
B. $\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(x)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=0$ for every $x \in I$.
C. There is an $M>0$ for which $\left|f^{(k)}(x)\right| \leq M^{k}$ for every $x \in I$ and every index k.
D. A and B.
*E. A and C.
[Note: Whether or not B is true is a Math 142B open question.]

Question 6 Given a function $f:[a, b] \rightarrow \mathbb{R}$. Then,
A. if f is bounded, then f is continuous.
B. if f is monotonically increasing then f is continuous.
C. if f is not continuous, then f is not integrable.
D. if f is integrable, then f is continuous.
*E. None of the above: all the above statements are false.

