Math 142B August 27, 2018

Question 1 Given a neighborhood I of a point x_0 and an infinitely differentiable function $f:I\to\mathbb{R}$. The First Fundamental Theorem asserts that $f(x)=f(x_0)+\int_{x_0}^x f'(t)\,dt$. Then,

- A. $\int_{x_0}^{x} f'(t) dt = f'(x_0)(x x_0) + \int_{x_0}^{x} f''(t)(x t) dt,$ after an integration by parts.
- B. $\int_{x_0}^{x} f''(t)(x-t) dt$ is the 1st Cauchy integral remainder for f at $x = x_0$.
- C. $f(x_0) + f'(x_0)(x x_0)$ is the 1st Taylor polynomial for f at $x = x_0$.
- D. B and C.
- *E. A, B, and C.

Question 2 Given a neighborhood I of a point x_0 and a function $f: I \to \mathbb{R}$ with n+1 derivatives. Let $p_n(x)$ be the n^{th} Taylor polynomial for f at $x = x_0$. Then,

- A. There is a c strictly between x and x_0 at which $f(x) p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x x_0)^{n+1}.$
- B. There is a *c* strictly between *x* and x_0 at which $\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1} = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt.$
- C. $\lim_{n\to\infty} \left\{ \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt \right\} = 0.$
- *D. **A** and **B**.
 - E. A, B, and C.

Question 3 Given any number β . Define $f:(-1,1)\to\mathbb{R}$ by $f(x)=(1+x)^{\beta}$. Then,

*A.
$$f^{(k)}(x) = \beta(\beta - 1) \cdots (\beta - k + 1)(1 + x)^{\beta - k}$$
.

B.
$$f(x) = \sum_{k=0}^{\infty} \frac{\beta(\beta-1)\cdots(\beta-k+1)}{k!} (1+x)^{\beta-k}$$
.

C.
$$f(x) = \sum_{k=0}^{\infty} {\beta \choose k} (1+x)^{\beta-k}$$
.

- D. **B** and **C**; they are the same since $\binom{\beta}{k} = \frac{\beta(\beta-1)\cdots(\beta-k+1)}{k!}$.
- E. All of the above.

Question 4 Given $x_0 \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ with derivatives of all orders.

Then
$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 is the n^{th} Taylor polynomial for f at $x = x_0$, and

- A. p_n has contact of order n with f at x_0 .
- B. $f(x) p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x x_0)^{n+1}$ for some c strictly between x and x_0 .
- C. $\lim_{n\to\infty} p_n(x) = f(x)$ for every x.
- *D. **A** and **B**.
 - E. A, B, and C.

Question 5 Given a neighborhood I of a point x_0 and an infinitely differentiable function $f:I\to\mathbb{R}$. Then, $f(x)=\sum_{k=0}^\infty \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k$ for every $x\in I$ whenever

- A. $\lim_{n\to\infty} [f(x)-p_n(x)]\to 0$ for every $x\in I$, where p_n is the n^{th} Taylor polynomial for f at x_0 .
- B. $\lim_{n \to \infty} \frac{f^{(n+1)}(x)}{(n+1)!} (x x_0)^{n+1} = 0$ for every $x \in I$.
- C. There is an M > 0 for which $\left| f^{(k)}(x) \right| \leq M^k$ for every $x \in I$ and every index k.
- D. A and B.
- *E. **A** and **C**.

[Note: Whether or not **B** is true is a Math 142B open question.]

Question 6 Given a function $f:[a,b] \to \mathbb{R}$. Then,

- A. if *f* is bounded, then *f* is continuous.
- B. if f is monotonically increasing then f is continuous.
- C. if f is not continuous, then f is not integrable.
- D. if f is integrable, then f is continuous.
- *E. None of the above: all the above statements are false.