Math 142B
 August 28, 2018

Question 1 Given a continuous function $f:[0,1] \rightarrow \mathbb{R}$. Given $\varepsilon>0$, there is a polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ such that $|f(x)-p(x)|<\varepsilon$ for all $x \in[0,1]$. We can construct such a polynomial p by defining
*A. $p(x):=\sum_{k=0}^{n} f\binom{k}{n}\binom{n}{k} x^{k}(1-x)^{n-k}$ for all x and an appropriately chosen index n.
B. $p(x):=\sum_{k=0}^{n} \frac{f^{(k)}\left(\frac{1}{2}\right)}{k!}\left(x-\frac{1}{2}\right)^{k}$ for all x and an appropriately chosen index n.
C. $p(x):=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}$ for all x and an appropriately chosen index n.
D. A and \mathbf{B}; both methods produce a polynomial p with the required property.
E. A, B, and C; all three methods produce a polynomial p with the required property.

Question 2 Given a continuous function $f:[a, b] \rightarrow \mathbb{R}$. Define $g:[0,1] \rightarrow[a, b]$ by $g(t)=a+(b-a) t$. Then,
A. $f \circ g:[0,1] \rightarrow \mathbb{R}$ given by $(f \circ g)(t)=f(g(t))$ is continuous.
B. Given $\varepsilon>0$, there is a polynomial q such that $|(f \circ g)(t)-q(t)|<\varepsilon$ for all $t \in[0,1]$.
C. Given $\varepsilon>0$ and q as in B, set $p(x)=q\left(\frac{x-a}{b-a}\right)$. Then, $|f(x)-p(x)|<\varepsilon$ for all $x \in[a, b]$
*D. All of the above.
E. None of the above.

Question 3 Given any number β. Define $f:(-1,1) \rightarrow \mathbb{R}$ by $f(x)=(1+x)^{\beta}$. Then,
*A. $f^{(k)}(x)=\beta(\beta-1) \cdots(\beta-k+1)(1+x)^{\beta-k}$.
B. $f(x)=\sum_{k=0}^{\infty} \frac{\beta(\beta-1) \cdots(\beta-k+1)}{k!}(1+x)^{\beta-k}$.
C. $f(x)=\sum_{k=0}^{\infty}\binom{\beta}{k}(1+x)^{\beta-k}$.
D. B and \mathbf{C}; they are the same since $\binom{\beta}{k}=\frac{\beta(\beta-1) \cdots(\beta-k+1)}{k!}$.
E. All of the above.

Question 4 Given a neighborhood I of x_{0} and an infinitely differentiable function $f: I \rightarrow \mathbb{R}$. Then,
A. $f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}\left(x_{0}\right)(x-t)^{n} d t$, for every $x \in I$ and every index n.
B. For every $x \in I$ and every index n, there is a c strictly between x and x_{0} at which

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

C. $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ for every $x \in I$ and every index n.
D. All of the above.
*E. A and B.

Question 5 The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by
$f(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0\end{array}\right.$ is an example of a function that is
A. bounded.
B. infinitely differentiable.
C. analytic.
D. All of the above.
*E. A and B.

Question 6 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the exponential function $f(x)=e^{x}$. Then,
A. The $n^{\text {th }}$ Taylor polynomial for f at $x=0$ is

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}=1+\frac{1}{2}+\cdots+\frac{1}{n!} x^{n} .
$$

B. $f^{(k)}(0)=p_{n}^{(k)}(0)$ for $0 \leq k \leq n$.
C. $\lim _{n \rightarrow \infty} p_{n}(x)=f(x)$ for every x.
D. A and B.
*E. A, B, and C.

