Math 142B August 29, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given a neighborhood I of a point x_0 and an infinitely differentiable function $f: I \to \mathbb{R}$. Then, $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ for every $x \in I$ whenever

- A. $\lim_{n\to\infty} [f(x) p_n(x)] \to 0$ for every $x \in I$, where p_n is the n^{th} Taylor polynomial for f at x_0 .
- B. There is an M > 0 for which $|f^{(k)}(x)| \le M^k$ for every $x \in I$ and every index k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

C.
$$\lim_{n \to \infty} \frac{f^{(n+1)}(x)}{(n+1)!} (x - x_0)^{n+1} = 0 \text{ for every } x \in I.$$

*D. **A** and **B**.

E. A, B and C.

[Note: Whether or not C is true is a Math 142B open question.]

Question 2 Given any number β . Define $f: (-1,1) \rightarrow \mathbb{R}$ by $f(x) = (1+x)^{\beta}$. Then,

A.
$$f^{(k)}(x) = \beta(\beta - 1) \cdots (\beta - k + 1)(1 + x)^{\beta - k}, \text{ thus}$$
$$f^{(k)}(0) = \beta(\beta - 1) \cdots (\beta - k + 1).$$

B.
$$f(x) = \sum_{k=0}^{\infty} \frac{\beta(\beta - 1) \cdots (\beta - k + 1)}{k!} x^{k}.$$

C.
$$f(x) = \sum_{k=0}^{\infty} {\beta \choose k} x^{k}.$$

D. **B** and **C**; they are the same since $\binom{\beta}{k} = \frac{\beta(\beta-1)\cdots(\beta-k+1)}{k!}$. *E. All of the above.

Question 3 For each index *n*, let $f_n : [0,1] \to \mathbb{R}$ be given by $f_n(x) = \begin{cases} 1 & \text{if } x = \frac{k}{2^n} \text{ for some integer } k, \ 0 \le k \le 2^n \\ 0 & \text{otherwise} \end{cases}$ Let $f : [0,1] \to \mathbb{R}$ be given by $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in [0,1]$. Then,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A.
$$\int_{0}^{1} f_{n} = 0 \text{ for every index } n.$$

B.
$$\int_{0}^{1} f = 0 \text{ and } \int_{0}^{1} f = 1.$$

C.
$$\int_{0}^{1} f = 0.$$

*D. **A** and **B**.

E. A and C.

Question 4 For each index *n*, let $f_n : [0,1] \to \mathbb{R}$ be given by

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < \frac{1}{n} \\ 2n - n^2 x & \text{if } \frac{1}{n} \le x < \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} \le x \le 1 \end{cases}$$

Let $f : [0, 1] \to \mathbb{R}$ be given by $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in [0, 1]$.
Then,

A.
$$\int_{0}^{1} f_{n} = 1 \text{ for every index } n.$$

B.
$$\int_{0}^{1} f = 0.$$

C.
$$\int_{0}^{1} f = \lim_{n \to \infty} \int_{0}^{1} f_{n}.$$

*D. **A** and **B**.

E. A and **C**.

Question 5 Given a sequence of functions $\{f_n : [a, b] \to \mathbb{R}\}$ such that $\{f_n\}$ converges pointwise to f on [a, b]. Then we can say that

A. if f_n is integrable for every index n, then f is integrable.

B. if
$$\int_{a}^{b} f_{n} = 1$$
 for every index *n*, then $\int_{a}^{b} f = 1$.

C. if f_n is continuous for every index n, then f is continuous.

D. All of the above.

*E. None of the above.

Question 6 Given a neighborhood *I* of a point x_0 and a function $f: I \to \mathbb{R}$ with n+1 derivatives. Let $p_n(x)$ be the n^{th} Taylor polynomial for f at $x = x_0$. Then,

A. There is a c strictly between x and
$$x_0$$
 at which

$$f(x) - p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

B. There is a *c* strictly between *x* and *x*₀ at which $\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1} = \frac{1}{n!}\int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt.$ C. $\lim_{n \to \infty} \left\{ \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt \right\} = 0.$

*D. **A** and **B**.

E. A, B, and C.