Math 142B
 August 29, 2018

Question 1 Given a neighborhood / of a point x_{0} and an infinitely differentiable function $f: I \rightarrow \mathbb{R}$. Then, $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ for every $x \in I$ whenever
A. $\lim _{n \rightarrow \infty}\left[f(x)-p_{n}(x)\right] \rightarrow 0$ for every $x \in I$, where p_{n} is the $n^{\text {th }}$ Taylor polynomial for f at x_{0}.
B. There is an $M>0$ for which $\left|f^{(k)}(x)\right| \leq M^{k}$ for every $x \in I$ and every index k.
C. $\lim _{n \rightarrow \infty} \frac{f^{(n+1)}(x)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=0$ for every $x \in I$.
*D. A and B.
E. A, B and C.
[Note: Whether or not \mathbf{C} is true is a Math 142B open question.]

Question 2 Given any number β. Define $f:(-1,1) \rightarrow \mathbb{R}$ by $f(x)=(1+x)^{\beta}$. Then,
A. $f^{(k)}(x)=\beta(\beta-1) \cdots(\beta-k+1)(1+x)^{\beta-k}$, thus
$f^{(k)}(0)=\beta(\beta-1) \cdots(\beta-k+1)$.
B. $f(x)=\sum_{k=0}^{\infty} \frac{\beta(\beta-1) \cdots(\beta-k+1)}{k!} x^{k}$.
C. $f(x)=\sum_{k=0}^{\infty}\binom{\beta}{k} x^{k}$.
D. B and C; they are the same since $\binom{\beta}{k}=\frac{\beta(\beta-1) \cdots(\beta-k+1)}{k!}$.
*E. All of the above.

Question 3 For each index n, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be given by
$f_{n}(x)= \begin{cases}1 & \text { if } x=\frac{k}{2^{n}} \text { for some integer } k, 0 \leq k \leq 2^{n} \\ 0 & \text { otherwise }\end{cases}$
Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$. Then,
A. $\int_{0}^{1} f_{n}=0$ for every index n.
B. $\int_{0}^{1} f=0$ and $\int_{0}^{1} f=1$.
C. $\int_{0}^{1} f=0$.
*D. A and B.
E. A and C.

Question 4 For each index n, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be given by
$f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<\frac{1}{n} \\ 2 n-n^{2} x & \text { if } \frac{1}{n} \leq x<\frac{2}{n} \\ 0 & \text { if } \frac{2}{n} \leq x \leq 1\end{cases}$
Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in[0,1]$. Then,
A. $\int_{0}^{1} f_{n}=1$ for every index n.
B. $\int_{0}^{1} f=0$.
C. $\int_{0}^{1} f=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}$.
*D. A and B.
E. A and C.

Question 5 Given a sequence of functions $\left\{f_{n}:[a, b] \rightarrow \mathbb{R}\right\}$ such that $\left\{f_{n}\right\}$ converges pointwise to f on $[a, b]$. Then we can say that
A. if f_{n} is integrable for every index n, then f is integrable.
B. if $\int_{a}^{b} f_{n}=1$ for every index n, then $\int_{a}^{b} f=1$.
C. if f_{n} is continuous for every index n, then f is continuous.
D. All of the above.
*E. None of the above.

Question 6 Given a neighborhood $/$ of a point x_{0} and a function $f: I \rightarrow \mathbb{R}$ with $n+1$ derivatives. Let $p_{n}(x)$ be the $n^{\text {th }}$ Taylor polynomial for f at $x=x_{0}$. Then,
A. There is a c strictly between x and x_{0} at which

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

B. There is a c strictly between x and x_{0} at which

$$
\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}=\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

C. $\lim _{n \rightarrow \infty}\left\{\frac{1}{n!} \int_{x_{0}}^{x} f^{(n+1)}(t)(x-t)^{n} d t\right\}=0$.
*D. A and B.
E. A, B, and C.

