1. Let $H_{n}:=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ be the $n^{\text {th }}$ harmonic number, and define $c_{n}:=H_{n}-\log (n+1)$.
(a) Prove that $0<x-\log (1+x)<\frac{1}{2} x^{2}$ for all $x>0$.
(b) Prove that $\left\{c_{n}\right\}$ is monotonically increasing.
(c) Prove that $c_{n}<1$ for every index n. Conclude that $\lim _{n \rightarrow \infty} c_{n}=\gamma$ for some $\gamma \leq 1$. [γ is called Euler's constant.]
2. Let $f:(0,2) \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{x}$.
(a) Find p_{n}, then $n^{\text {th }}$ Taylor polynomial for f at $x_{0}=1$.
(b) Show that for every natural number $n, f(x)-p_{n}(x)=\frac{(1-x)^{n+1}}{x}$ if $0<x<2$.
(c) Prove that $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!}(x-1)^{k}$ if $|x-1|<1$.
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is infinitely differentiable and that

$$
\left\{\begin{array}{l}
f^{\prime \prime}(x)-f^{\prime}(x)-f(x)=0 \quad \text { for all } x \\
f(0)=1 \quad \text { and } \quad f^{\prime}(0)=1
\end{array}\right.
$$

(a) Find a recursive formula for the coefficients of the $n^{\text {th }}$ Taylor polynomial for f at $x=0$.
(b) Show that the Taylor expansion converges at every point.
4. Explain how the identity

$$
s=\frac{1+\left(\frac{s-1}{s+1}\right)}{1-\left(\frac{s-1}{s+1}\right)} \quad \text { if } \quad s \neq 0
$$

allows one to efficiently compute the value of $\log (1+x)$ if $0<x<1$ and x is close to 1 .
5. Given continuous functions $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ with $g(x) \geq 0$ for all $x \in[a, b]$. Show that there is a point $c \in(a, b)$ at which

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

6. By applying the Cauchy Integral Remainder Theorem, we obtain the formula $\log (1+x)=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^{k}+(-1)^{n} \int_{0}^{x} \frac{(x-t)^{n}}{(1+t)^{n+1}} d t$ for all $x>-1$ and every index n.

Show that

$$
\log (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k} \quad \text { for all } \quad x \in(-1,1]
$$

[Note: As we'll see later, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}$ diverges when $x>1$.]
7. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0\end{cases}
$$

Show that, given $r>0$, there is no $M>0$ such that for every index $n,\left|f^{(n)}(x)\right| \leq M^{n}$ for all $x \in[-r, r]$.
8. Let n and k be indices with $1 \leq k \leq n$.
(a) Show that $\frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}$.
(b) Use the result of part (a) and equation (8.42) from your textbook to verify that

$$
\sum_{k=0}^{n} \frac{k}{n}\binom{n}{k} x^{k}(1-x)^{n-k}=x
$$

9. Let n and k be indices with $2 \leq k \leq n$.
(a) Show that $\frac{k(k-1)}{n(n-1)}\binom{n}{k}=\binom{n-2}{k-2}$.
(b) Use the result of part (a) and equation (8.42) from your textbook to verify that $\sum_{k=0}^{n} \frac{k(k-1)}{n(n-1)}\binom{n}{k} x^{k}(1-x)^{n-k}=x^{2}$.
10. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=\left|x-\frac{1}{2}\right|$. Using the proof of the Weierstrass Approximation Theorem, find an explicit formula for a polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ such that $|f(x)-p(x)|<\frac{1}{4}$ for all $x \in[0,1]$.
