## Instructions

1. You may use any type of calculator, but no other electronic devices during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
5. Read each question carefully, and answer each question completely.
6. Show all of your work; no credit will be given for unsupported answers.
7. Let $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational. }\end{cases}
$$

(a) Show that the lower integral $\int_{-0}^{1} f \leq \frac{1}{2}$.
(b) Show that the upper integral $\int_{0}^{1} f=1$.
(c) Is $f$ integrable? Explain.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{c}^{d} f \geq 0$ for all $c, d$ with $a \leq c<d \leq b$. Prove that $f(x) \geq 0$ for all $x \in[a, b]$.
3. For numbers $a_{0}, a_{1}, \ldots, a_{n}$, define $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ for all $x$. Suppose that

$$
a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots+\frac{a_{n}}{n+1}=0
$$

Prove that there is an $x_{0} \in(0,1)$ such that $p\left(x_{0}\right)=0$.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be monotonically increasing.
(a) Show that $f$ is bounded on $[a, b]$.
(b) Let $P_{n}$ be a regular partition of $[a, b]$ into $n$ partition intervals. Show that

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{[f(b)-f(a)][b-a]}{n}
$$

