• • •

Instructions

- 1. You may use any type of calculator, but no other electronic devices during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new side of a page.
- 5. Read each question carefully, and answer each question completely.
- 6. Show all of your work; no credit will be given for unsupported answers.
- 1. Given the polynomial $p(x) = x^4 x + 1$, find constants c_0, c_1, c_2, c_3, c_4 so that $p(x) = c_0 + c_1(x-1) + c_2(x-1)^2 + c_3(x-1)^3 + c_4(x-1)^4$.
- 2. Recall that the hyperbolic cosine and hyperbolic sine functions are defined by

$$\cosh(x) = \frac{e^x + e^{-x}}{2}, \qquad \sinh(x) = \frac{e^x - e^{-x}}{2}$$

and that they satisfy the identities

$$\cosh(0) = 1$$
, $\sinh(0) = 0$, $\cosh'(x) = \sinh(x)$, $\sinh'(x) = \cosh(x)$.

(a) Verify that $p_n(x) = \sum_{k=0}^n \frac{1}{(2k)!} x^{2k} = 1 + \frac{1}{2}x^2 + \frac{1}{24}x^4 + \dots + \frac{1}{(2n)!}x^{2n}$ is the *n*th Taylor

polynomial for $\cosh(x)$ centered at $x_0 = 0$. (Hint: Verify that $\cosh^{(2k)}(0) = 1$ and $\cosh^{(2k+1)}(0) = 0$ for each $k = 0, 1, 2, 3, \ldots$)

(b) Show that $\cosh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k}$ for all x. That is, show that the Taylor series expansion for $\cosh(x)$ centered at $x_0 = 0$ is valid for all x.

Exam continues on other side.

3. The algebraic identity $\frac{1}{1+t^2} = \sum_{k=0}^n (-1)^k t^{2k} + \frac{(-1)^{n+1} t^{2n+2}}{1+t^2}$ implies that for every $n \in \mathbb{N}$ and every x, $\tan^{-1}(x) = \sum_{k=0}^n \frac{(-1)^k}{2k+1} x^{2k+1} + (-1)^{n+1} \int_0^x \frac{t^{2n+2}}{1+t^2} dt$. Prove that $\tan^{-1}(x) = \sum_{k=0}^\infty \frac{(-1)^k}{2k+1} x^{2k+1}$ for |x| < 1.

4. Define $f_n(x): (0,1) \to \mathbb{R}$ by

$$f_n(x) = \frac{1}{1-x} + \frac{(1-x^2)}{1-x} + \frac{(1-x^2)^2}{1-x} + \dots + \frac{(1-x^2)^n}{1-x}$$

Show that the sequence $\{f_n\}$ converges pointwise and determine the limit function $f: (0,1) \to \mathbb{R}$.