Math 142B
Midterm Exam 2
August 28, 2014

Instructions

1. You may use any type of calculator, but no other electronic devices during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
5. Read each question carefully, and answer each question completely.
6. Show all of your work; no credit will be given for unsupported answers.
7. Given the polynomial $p(x)=x^{4}-x+1$, find constants $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ so that $p(x)=c_{0}+c_{1}(x-1)+c_{2}(x-1)^{2}+c_{3}(x-1)^{3}+c_{4}(x-1)^{4}$.
8. Recall that the hyperbolic cosine and hyperbolic sine functions are defined by

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}, \quad \sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

and that they satisfy the identities

$$
\cosh (0)=1, \quad \sinh (0)=0, \quad \cosh ^{\prime}(x)=\sinh (x), \quad \sinh ^{\prime}(x)=\cosh (x)
$$

(a) Verify that $p_{n}(x)=\sum_{k=0}^{n} \frac{1}{(2 k)!} x^{2 k}=1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\cdots+\frac{1}{(2 n)!} x^{2 n}$ is the $n^{\text {th }}$ Taylor polynomial for $\cosh (x)$ centered at $x_{0}=0$. (Hint: Verify that $\cosh ^{(2 k)}(0)=1$ and $\cosh ^{(2 k+1)}(0)=0$ for each $k=0,1,2,3, \ldots$)
(b) Show that $\cosh (x)=\sum_{k=0}^{\infty} \frac{1}{(2 k)!} x^{2 k}$ for all x. That is, show that the Taylor series expansion for $\cosh (x)$ centered at $x_{0}=0$ is valid for all x.

Exam continues on other side.

3. The algebraic identity $\frac{1}{1+t^{2}}=\sum_{k=0}^{n}(-1)^{k} t^{2 k}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}$ implies that for every
$n \in \mathbb{N}$ and every $x, \tan ^{-1}(x)=\sum_{k=0}^{n} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}+(-1)^{n+1} \int_{0}^{x} \frac{t^{2 n+2}}{1+t^{2}} d t$.

$$
\text { Prove that } \quad \tan ^{-1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} \quad \text { for } \quad|x|<1
$$

4. Define $f_{n}(x):(0,1) \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{1}{1-x}+\frac{\left(1-x^{2}\right)}{1-x}+\frac{\left(1-x^{2}\right)^{2}}{1-x}+\cdots+\frac{\left(1-x^{2}\right)^{n}}{1-x}
$$

Show that the sequence $\left\{f_{n}\right\}$ converges pointwise and determine the limit function $f:(0,1) \rightarrow \mathbb{R}$.

