Instructions

1. You may use any type of calculator, but no other electronic devices during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
5. Read each question carefully, and answer each question completely.
6. Show all of your work; no credit will be given for unsupported answers.
7. Given $f:[0,1] \rightarrow \mathbb{R}$ a continuous function. Show that

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\right]=\int_{0}^{1} f
$$

2. Given $f:[0,2] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ x+1 & \text { if } 1<x \leq 2\end{cases}
$$

(a) Determine the mean value of f.
(b) Show that $f(x)$ is not equal to the mean value of f for any $x \in[0,2]$. Explain why this does not contradict the Mean Value Theorem.
3. Expand the polynomial $p(x)=(x+1)^{5}-(x+1)^{3}+(x+1)$ in powers of x.
4. Given $f: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable. Use the Second Fundamental Theorem to show that

$$
f(x)=f(0)+f^{\prime}(0) x+\int_{0}^{x}(x-t) f^{\prime \prime}(t) d t \quad \text { for all } x
$$

(Remark: $\quad \int_{0}^{x}(x-t) f^{\prime \prime}(t) d t$ is the Cauchy integral remainder for the first Taylor polynomial of f centered at $x_{0}=0$.)

Exam continues on other side.

5. Consider the function $f:(0,2) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$.
(a) Find a formula for p_{n}, the $n^{\text {th }}$ Taylor polynomial for f centered at $x_{0}=1$.
(b) Use the Geometric Sum Formula to show that

$$
f(x)-p_{n}(x)=\frac{(1-x)^{n+1}}{x} \quad \text { for every natural number } n .
$$

(c) Prove that

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!}(x-1)^{k} \quad \text { for all }|x-1|<1
$$

That is, prove that the Taylor series for $f(x)$ centered at $x_{0}=1$ converges for all $|x-1|<1$.
6. Consider the sequence of functions $\left\{f_{n}:[0,1] \rightarrow \mathbb{R}\right\}$ defined by $f_{n}(x)=2 n x e^{-n x^{2}}$ for each $n \in \mathbb{N}$.
(a) Determine the limit function $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
(b) Show that $\int_{0}^{1} f \neq \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}$.
(c) Does f_{n} converge uniformly to f ? Briefly justify your answer.
7. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 1 & \text { otherwise }\end{cases}
$$

(a) Find a sequence $\left\{P_{n}\right\}$ of partitions of $[0,1]$ that form an Archimedean sequence of partitions for f and verify that $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$.
[Hint: Write $P_{n}=\left\{x_{0}, \ldots, x_{k_{n}+1}\right\}$, set $x_{1}=\frac{1}{n}$, and set $x_{i}-x_{i-1}=\frac{1}{k_{n}}\left(1-\frac{1}{n}\right)$ for $2 \leq i \leq k_{n}+1$ and sufficiently large k_{n}.]
(b) Determine the value of $\int_{0}^{1} f$.

