•••

Instructions

- 1. You may use any type of calculator, but no other electronic devices during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write your solutions clearly in your Blue Book
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each question on a new side of a page.
- 5. Read each question carefully, and answer each question completely.
- 6. Show all of your work; no credit will be given for unsupported answers.
- 1. Given $f:[0,1] \to \mathbb{R}$ a continuous function. Show that

$$\lim_{n \to \infty} \left[\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \right] = \int_{0}^{1} f.$$

2. Given $f:[0,2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1, \\ x+1 & \text{if } 1 < x \le 2. \end{cases}$$

- (a) Determine the mean value of f.
- (b) Show that f(x) is not equal to the mean value of f for any $x \in [0, 2]$. Explain why this does not contradict the Mean Value Theorem.
- 3. Expand the polynomial $p(x) = (x+1)^5 (x+1)^3 + (x+1)$ in powers of x.
- 4. Given $f : \mathbb{R} \to \mathbb{R}$ twice continuously differentiable. Use the Second Fundamental Theorem to show that

$$f(x) = f(0) + f'(0) x + \int_0^x (x - t) f''(t) dt \text{ for all } x$$

(Remark: $\int_0^x (x-t) f''(t) dt$ is the Cauchy integral remainder for the first Taylor polynomial of f centered at $x_0 = 0$.)

Exam continues on other side.

- 5. Consider the function $f: (0,2) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$.
 - (a) Find a formula for p_n , the n^{th} Taylor polynomial for f centered at $x_0 = 1$.
 - (b) Use the Geometric Sum Formula to show that

$$f(x) - p_n(x) = \frac{(1-x)^{n+1}}{x}$$
 for every natural number n .

(c) Prove that

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!} (x-1)^k \text{ for all } |x-1| < 1.$$

That is, prove that the Taylor series for f(x) centered at $x_0 = 1$ converges for all |x - 1| < 1.

- 6. Consider the sequence of functions $\{f_n : [0,1] \to \mathbb{R}\}$ defined by $f_n(x) = 2nx e^{-nx^2}$ for each $n \in \mathbb{N}$.
 - (a) Determine the limit function $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Show that $\int_0^1 f \neq \lim_{n \to \infty} \int_0^1 f_n$.
 - (c) Does f_n converge uniformly to f? Briefly justify your answer.
- 7. Consider the function $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N}, \\ 1 & \text{otherwise.} \end{cases}$$

- (a) Find a sequence $\{P_n\}$ of partitions of [0, 1] that form an Archimedean sequence of partitions for f and verify that $\lim_{n\to\infty} [U(f, P_n) - L(f, P_n)] = 0$. [Hint: Write $P_n = \{x_0, \ldots, x_{k_n+1}\}$, set $x_1 = \frac{1}{n}$, and set $x_i - x_{i-1} = \frac{1}{k_n} (1 - \frac{1}{n})$ for $2 \le i \le k_n + 1$ and sufficiently large k_n .]
- (b) Determine the value of $\int_0^1 f$.