Math 120A
September 3, 2019

Question $1 f(z)$ is analytic at ∞ if
A. there is $\rho>0$ for which $f(z)=\sum_{k=0}^{\infty} \frac{b_{k}}{z^{k}}$ for all $|z|>\rho$.
B. $g(w)=f\left(\frac{1}{w}\right)$ is analytic at $w=0$.
C. there is $\sigma>0$ for which $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ for all $|z|<\sigma$.
*D. A and \mathbf{B}.
E. B and C.

Question 2 Given $f(z)=\sum_{k=-\infty}^{\infty} b_{k} z^{k}$ for all $|z|>R . f(z)$ has a removable singularity at ∞ if
*A. $b_{k}=0$ for all integers $k>0$.
B. the principle part of $f(z)$ vanishes at ∞.
C. there is an integer $N \geq 1$ for which $b_{N} \neq 0$ but $b_{k}=0$ for all integers $k>N$.
D. $b_{k} \neq 0$ for infinitely many integers $k>0$.
E. none of the above; you can't remove singularities, especially at ∞.

Question 3 Given $f(z)=\sum_{k=-\infty}^{\infty} b_{k} z^{k}$ for all $|z|>R . f(z)$ has an essential singularity at ∞ if
A. $b_{k}=0$ for all integers $k>0$.
B. the principle part of $f(z)$ vanishes at ∞.
C. there is an integer $N \geq 1$ for which $b_{N} \neq 0$ but $b_{k}=0$ for all integers $k>N$.
*D. $b_{k} \neq 0$ for infinitely many integers $k>0$.
E. none of the above; singularities aren't essential, you can get by perfectly well without them.

Question 4 Given $f(z)=\sum_{k=-\infty}^{\infty} b_{k} z^{k}$ for all $|z|>R . f(z)$ has a pole of order N at ∞ if
A. $b_{k}=0$ for all integers $k>0$.
B. the principle part of $f(z)$ vanishes at ∞.
${ }^{*}$ C. there is an integer $N \geq 1$ for which $b_{N} \neq 0$ but $b_{k}=0$ for all integers $k>N$.
D. $b_{k} \neq 0$ for infinitely many integers $k>0$.
E. none of the above; poles are simple objects and don't need to be ordered by N.

Question 5 Given that $f(z)$ has a pole of order N at z_{0}. Then, A. $f^{(k)}\left(z_{0}\right)=0$ for integers $k, 0 \leq k<N$ and $f^{(N)}\left(z_{0}\right) \neq 0$.
B. $h(z)=\left(z-z_{0}\right)^{N} f(z)$ is analytic at z_{0} and $h\left(z_{0}\right) \neq 0$.
C. $f(z)$ has a Laurent series $\sum_{m=1}^{N} \frac{b_{m}}{\left(z-z_{0}\right)^{m}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$.
D. A and B.
*E. B and C.

