Math 120A September 3, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 f(z) is analytic at ∞ if

A. there is
$$ho>0$$
 for which $f(z)=\sum_{k=0}^\infty rac{b_k}{z^k}$ for all $|z|>
ho.$

B.
$$g(w) = f\left(\frac{1}{w}\right)$$
 is analytic at $w = 0$.

C. there is
$$\sigma > 0$$
 for which $f(z) = \sum_{k=0}^{\infty} a_k z^k$ for all $|z| < \sigma$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

- *D. \mathbf{A} and \mathbf{B} .
 - E. B and C.

Question 2 Given $f(z) = \sum_{k=-\infty}^{\infty} b_k z^k$ for all |z| > R. f(z) has a removable singularity at ∞ if

*A. $b_k = 0$ for all integers k > 0.

- B. the principle part of f(z) vanishes at ∞ .
- C. there is an integer $N \ge 1$ for which $b_N \ne 0$ but $b_k = 0$ for all integers k > N.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- D. $b_k \neq 0$ for infinitely many integers k > 0.
- E. none of the above; you can't remove singularities, especially at ∞ .

Question 3 Given $f(z) = \sum_{k=-\infty}^{\infty} b_k z^k$ for all |z| > R. f(z) has an essential singularity at ∞ if

A. $b_k = 0$ for all integers k > 0.

- B. the principle part of f(z) vanishes at ∞ .
- C. there is an integer $N \ge 1$ for which $b_N \ne 0$ but $b_k = 0$ for all integers k > N.
- *D. $b_k \neq 0$ for infinitely many integers k > 0.
 - E. none of the above; singularities aren't essential, you can get by perfectly well without them.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 4 Given $f(z) = \sum_{k=-\infty}^{\infty} b_k z^k$ for all |z| > R. f(z) has a pole of order N at ∞ if

A. $b_k = 0$ for all integers k > 0.

- B. the principle part of f(z) vanishes at ∞ .
- *C. there is an integer $N \ge 1$ for which $b_N \ne 0$ but $b_k = 0$ for all integers k > N.
 - D. $b_k \neq 0$ for infinitely many integers k > 0.
 - E. none of the above; poles are simple objects and don't need to be ordered by *N*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 5 Given that f(z) has a pole of order N at z_0 . Then,

A.
$$f^{(k)}(z_0) = 0$$
 for integers $k, 0 \le k < N$ and $f^{(N)}(z_0) \ne 0$.
B. $h(z) = (z - z_0)^N f(z)$ is analytic at z_0 and $h(z_0) \ne 0$.
C. $f(z)$ has a Laurent series $\sum_{m=1}^N \frac{b_m}{(z - z_0)^m} + \sum_{n=0}^\infty a_n(z - z_0)^n$.

D. **A** and **B**.

*E. **B** and **C**.