Math 120A September 4, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Given $f(z) = \sum_{k=-\infty}^{\infty} b_k z^k$ for all |z| > R. f(z) has a removable singularity at ∞ if

*A. $b_k = 0$ for all integers k > 0.

- B. the principle part of f(z) vanishes at ∞ .
- C. there is an integer $N \ge 1$ for which $b_N \ne 0$ but $b_k = 0$ for all integers k > N.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- D. $b_k \neq 0$ for infinitely many integers k > 0.
- E. none of the above; you can't remove singularities, especially at ∞ .

Question 2 A function f(z) has a nonzero residue at z_0 if

A. z_0 is an isolated singularity of f(z)

B. the principal part of f(z) is not zero.

*C.
$$z_0$$
 is the only singularity of $f(z)$ in $|z - z_0| < \rho$ and
$$\int_{|\zeta - z_0| = \epsilon} f(\zeta) \, d\zeta \neq 0 \text{ for every } 0 < \epsilon < \rho.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

D. all of the above.

E. none of the above.

Question 3 Suppose f(z) has an essential singularity at z_0 . Then,

A. Res $[f(z), z_0]$, the residue of f(z) at z_0 , is undefined.

B.
$$\int_{|\zeta-z_0|=\epsilon} f(\zeta) \, d\zeta$$
 is not defined for any $\epsilon > 0$.

C.
$$f(z)$$
 is not analytic at ∞ .

- D. all of the above.
- *E. none of the above.

Question 4 Let $f(z) = \frac{1}{(z - z_0)^2}$. Then, A. $\int_{|\zeta - z_0| = \epsilon} f(\zeta) d\zeta = 0$ for every $\epsilon > 0$. B. $\int_{|\zeta - z_0| = \epsilon} f(\zeta) d\zeta = 2\pi i$ for every $\epsilon > 0$. C. Res $[f(z), z_0] = 0$. *D. **A** and **C**.

E. none of the above.

Question 5 Let $f(z) = \frac{1}{(z - z_0)}$. Then, A. $\int_{|\zeta - z_0| = \epsilon} f(\zeta) d\zeta = 0$ for every $\epsilon > 0$. *B. $\int_{|\zeta - z_0| = \epsilon} f(\zeta) d\zeta = 2\pi i$ for every $\epsilon > 0$. C. Res $[f(z), z_0] = 0$. D. A and C.

E. none of the above.