Math 120A
September 4, 2019

Question 1 Given $f(z)=\sum_{k=-\infty}^{\infty} b_{k} z^{k}$ for all $|z|>R . f(z)$ has a removable singularity at ∞ if
*A. $b_{k}=0$ for all integers $k>0$.
B. the principle part of $f(z)$ vanishes at ∞.
C. there is an integer $N \geq 1$ for which $b_{N} \neq 0$ but $b_{k}=0$ for all integers $k>N$.
D. $b_{k} \neq 0$ for infinitely many integers $k>0$.
E. none of the above; you can't remove singularities, especially at ∞.

Question 2 A function $f(z)$ has a nonzero residue at z_{0} if
A. z_{0} is an isolated singularity of $f(z)$
B. the principal part of $f(z)$ is not zero.
${ }^{*} C . z_{0}$ is the only singularity of $f(z)$ in $\left|z-z_{0}\right|<\rho$ and

$$
\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta \neq 0 \text { for every } 0<\epsilon<\rho
$$

D. all of the above.
E. none of the above.

Question 3 Suppose $f(z)$ has an essential singularity at z_{0}. Then,
A. $\operatorname{Res}\left[f(z), z_{0}\right]$, the residue of $f(z)$ at z_{0}, is undefined.
B. $\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta$ is not defined for any $\epsilon>0$.
C. $f(z)$ is not analytic at ∞.
D. all of the above.
*E. none of the above.

Question 4 Let $f(z)=\frac{1}{\left(z-z_{0}\right)^{2}}$. Then,
A. $\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta=0$ for every $\epsilon>0$.
B. $\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta=2 \pi i$ for every $\epsilon>0$.
C. $\operatorname{Res}\left[f(z), z_{0}\right]=0$.
*D. A and C.
E. none of the above.

Question 5 Let $f(z)=\frac{1}{\left(z-z_{0}\right)}$. Then,
A. $\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta=0$ for every $\epsilon>0$.
*B. $\int_{\left|\zeta-z_{0}\right|=\epsilon} f(\zeta) d \zeta=2 \pi i$ for every $\epsilon>0$.
C. $\operatorname{Res}\left[f(z), z_{0}\right]=0$.
D. \mathbf{A} and \mathbf{C}.
E. none of the above.

