Math 120A
September 5, 2019

Question 1 An entire function is a function that is analytic on the entire complex plane.
When $f(z)$ is a bounded entire function with $|f(z)| \leq M$ for all $z \in \mathbb{C}$, Cauchy's integral formula asserts that for every $z \in \mathbb{C}$ and every $R>0$,
A. $f^{\prime}(z)=\frac{1}{2 \pi i} \int_{|\zeta-z|=R} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta$.
B. $\left|f^{\prime}(z)\right| \leq \frac{1}{2 \pi} \frac{M}{R^{2}} \cdot 2 \pi R=\frac{M}{R}$, by an ML-estimate.
C. $f^{\prime}(z)=0$ for every $z \in \mathbb{C}$.
D. \mathbf{A} and $\mathbf{B} ; \mathbf{B}$ is an $M L$-estimate applied to \mathbf{A}.
*E. all of the above; \mathbf{C} follows by letting $R \rightarrow \infty$.

Question 2 Suppose $f(z)$ is complex-differentiable and $g(x, y)$ is real-differentiable. Which of the following properties does $g(x, y)$ share with $f(z)$?
A. $\oint_{\gamma} f(z) d z=0$ along any simple closed path γ.
B. $f(z)$ has derivatives of all orders.
C. $f(z)$ is represented by a power series at every point.
D. all of the above; \mathbb{R}^{2} is the same as \mathbb{C}.
*E. none of the above; \mathbb{C} is not the same as \mathbb{R}^{2}.

Question 3 Why does $\log (z)$ have branches?
A. e^{z} is periodic.
B. You have to restrict the domain of e^{z} to obtain an invertible function.
C. There are many choices for a restricted domain on which e^{z} is invertible.
*D. All of the above.
E. None of the above.

Question 4 Suppose z_{0} is a branch point of $f(z)$. Then,
*A. z_{0} is a singularity of $f(z)$.
B. z_{0} is an isolated singularity of $f(z)$.
C. $f(z)$ has a Laurent series expansion centered at z_{0}.
D. all of the above.
E. none of the above.

Question 5 In order to evaluate an integral of a function $f(z)$ with a branch point at z_{0} using contour integration, you must
A. choose a contour that includes z_{0} in the enclosed domain.
B. compute the residue of $f(z)$ at z_{0} and apply the residue theorem.
*C. avoid the branch point by using a keyhole contour.
D. A and B
E. none of the above.

Question 6 Let $f(z)=e^{z}$ and $g(z)=z^{\frac{1}{4}}$.
A. $f(z)$ is single-valued, but $g(z)$ is multiple-valued.
B. $f\left(\frac{1}{4}\right)=g(e)$ since they are both equal to $e^{\frac{1}{4}}$.
C. $g(e)=\left\{e^{\frac{1}{4}+i \frac{\pi}{2} k}, k=0,1,2,3\right\}$.
D. B and C
*E. A and C

Question 7 The power function z^{α} is single-valued
A. for every real number α.
B. for every rational number α.
${ }^{*}$ C. for every integer α.
D. All of the above; after all, every rational number is a real number and every integer is a rational number.
E. None of the above; z^{α} is always multiple-valued.

Question 8 Let n be a positive integer with $n \geq 2$, and let z be a nonzero complex number. Then,
*A. $z^{\frac{1}{n}}$ has n distinct values.
B. $z^{\frac{1}{n}}$ is single-valued.
C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}}=1$.
D. A and C
E. B and C

Question $9 f(z)=\frac{a z+b}{c z+d}$ is a fractional linear transformation.
We can conclude that f is defined at every point on
A. the complex plane \mathbb{C}.
B. the extended complex plane \mathbb{C}^{*}.
C. the Riemann sphere via stereographic projection.
D. A and B
*E. B and C

Question 10 Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth path with length L. We can conclude
A. $\left|\int_{\gamma} d z\right| \leq L$.
B. $\int_{\gamma}|d z|=L$.
C. $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=L$.
D. B and \mathbf{C}; they are the same.
*E. all of the above.

Question 12 The functions $f_{k}:[0,1] \rightarrow \mathbb{R}$ given by $f_{k}(x)=x^{k}$
A. are all continous.
B. converge pointwise to a discontinuous function.
C. converge uniformly to a discontinous function.
*D. A and B.
E. all of the above; if they converge uniformly, they also converge pointwise.

Question 13 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question 14 Suppose $\sum_{k=0}^{\infty} a_{k}(z-(1+i))^{2}$ is the power series for $f(z)=\frac{1}{1+z^{2}}$ centered at $1+i$. It's radius of convergence is
*A. 1 .
B. $\sqrt{5}$.
C. $R=\infty$ since $f(z)$ is defined for all z.
D. $R=0$ since the power series converges only at $1+i$.
E. None of the above.

Question 15 The function $f(z)=\frac{1}{z}+\frac{1}{z^{5}}=\frac{z^{4}+1}{z^{5}}$. We can conclude
A. $f(z)$ has four simple zeros: $z \in\left\{e^{i \frac{\pi}{4}}, e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}\right\}$.
B. $f(z)$ has a zero of order 5 at ∞.
C. $\frac{1}{z}+\frac{1}{z^{5}}$ is the Laurent series of f for $|z|>0$.
D. A and B.
*E. A and C.

