Math 120A September 5, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 An *entire* function is a function that is analytic on the entire complex plane.

When f(z) is a bounded entire function with $|f(z)| \le M$ for all $z \in \mathbb{C}$, Cauchy's integral formula asserts that for every $z \in \mathbb{C}$ and every R > 0,

A.
$$f'(z) = \frac{1}{2\pi i} \int_{|\zeta - z| = R} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta.$$

B. $|f'(z)| \le \frac{1}{2\pi} \frac{M}{R^2} \cdot 2\pi R = \frac{M}{R}$, by an *ML*-estimate.
C. $f'(z) = 0$ for every $z \in \mathbb{C}$.

D. A and B; B is an *ML*-estimate applied to A.

*E. all of the above; **C** follows by letting $R \to \infty$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Question 2 Suppose f(z) is complex-differentiable and g(x, y) is real-differentiable. Which of the following properties does g(x, y) share with f(z)?

A.
$$\oint_{\gamma} f(z) dz = 0$$
 along any simple closed path γ .

B. f(z) has derivatives of all orders.

C. f(z) is represented by a power series at every point.

- D. all of the above; \mathbb{R}^2 is the same as \mathbb{C} .
- *E. none of the above; $\mathbb C$ is not the same as $\mathbb R^2.$

Question 3 Why does log(z) have branches?

- A. e^z is periodic.
- B. You have to restrict the domain of e^z to obtain an invertible function.
- C. There are many choices for a restricted domain on which e^z is invertible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- *D. All of the above.
 - E. None of the above.

Question 4 Suppose z_0 is a branch point of f(z). Then,

- *A. z_0 is a singularity of f(z).
 - B. z_0 is an isolated singularity of f(z).
 - C. f(z) has a Laurent series expansion centered at z_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- D. all of the above.
- E. none of the above.

Question 5 In order to evaluate an integral of a function f(z) with a branch point at z_0 using contour integration, you must

- A. choose a contour that includes z_0 in the enclosed domain.
- B. compute the residue of f(z) at z_0 and apply the residue theorem.

- *C. avoid the branch point by using a keyhole contour.
- D. A and B
- E. none of the above.

Question 6 Let $f(z) = e^z$ and $g(z) = z^{\frac{1}{4}}$. A. f(z) is single-valued, but g(z) is multiple-valued. B. $f\left(\frac{1}{4}\right) = g(e)$ since they are both equal to $e^{\frac{1}{4}}$. C. $g(e) = \left\{e^{\frac{1}{4}+i\frac{\pi}{2}k}, k = 0, 1, 2, 3\right\}$. D. **B** and **C** ***E**. **A** and **C**

Question 7 The power function z^{α} is single-valued

- A. for every real number α .
- B. for every rational number α .
- *C. for every integer α .
 - D. All of the above; after all, every rational number is a real number and every integer is a rational number.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

E. None of the above; z^{α} is always multiple-valued.

Question 8 Let *n* be a positive integer with $n \ge 2$, and let *z* be a nonzero complex number. Then,

- *A. $z^{\frac{1}{n}}$ has *n* distinct values.
 - B. $z^{\frac{1}{n}}$ is single-valued.
 - C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}} = 1.$
 - D. A and \boldsymbol{C}
 - E. B and C

Question 9 $f(z) = \frac{az+b}{cz+d}$ is a fractional linear transformation. We can conclude that f is defined at every point on

- A. the complex plane \mathbb{C} .
- B. the extended complex plane \mathbb{C}^* .
- C. the Riemann sphere via stereographic projection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- D. A and B
- *E. B and C

Question 10 Let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth path with length *L*. We can conclude

(ロ)、(型)、(E)、(E)、 E) の(()

A.
$$\left| \int_{\gamma} dz \right| \leq L.$$

B. $\int_{\gamma} |dz| = L.$
C. $\int_{a}^{b} |\gamma'(t)| dt = L.$

- D. **B** and **C**; they are the same.
- *E. all of the above.

Question 12 The functions $f_k : [0,1] \to \mathbb{R}$ given by $f_k(x) = x^k$

A. are all continous.

- B. converge pointwise to a discontinuous function.
- C. converge uniformly to a discontinous function.
- *D. **A** and **B**.
 - E. all of the above; if they converge uniformly, they also converge pointwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question 13 Suppose $\sum_{k=0}^{\infty} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{\infty} a_k z^k$

A. converges absolutely for every z with $|z| < |z_0|$.

B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.

- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 14 Suppose $\sum_{k=0}^{\infty} a_k (z - (1 + i))^2$ is the power series for $f(z) = \frac{1}{1 + z^2}$ centered at 1 + i. It's radius of convergence is *A. 1. B. $\sqrt{5}$. C. $R = \infty$ since f(z) is defined for all z. D. R = 0 since the power series converges only at 1 + i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E. None of the above.

Question 15 The function $f(z) = \frac{1}{z} + \frac{1}{z^5} = \frac{z^4 + 1}{z^5}$. We can conclude A. f(z) has four simple zeros: $z \in \left\{e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}\right\}$. B. f(z) has a zero of order 5 at ∞ . C. $\frac{1}{z} + \frac{1}{z^5}$ is the Laurent series of f for |z| > 0. D. A and B. *E. A and C.