Math 120A August 8, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Let z be a complex number. Then,

A.
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
, which is a real number.
B. $\operatorname{Im}(z) = \frac{z - \overline{z}}{2}$, which is a purely imaginary number.
C. $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$, which is a real number.
D. A and B
*E. A and C

・ロト・(型ト・(型ト・(型ト))

Question 2 Let *n* be a positive integer. An n^{th} root of unity is a complex number *z* with the property that $z^n = 1$. Thus,

- A. 1 is an n^{th} root of unity, and there are n-1 additional distinct n^{th} roots of unity.
- B. if w is an n^{th} root of unity, $w = e^{\frac{2\pi k}{n}}$ for some integer $k = 0, 1, \dots, n-1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- C. *i* is an n^{th} root of unity for all even integers *n*. For example, $i^4 = 1$ so *i* is a 4th root of unity.
- D. B and C
- *E. A and B

Question 3 Let *n* be a positive integer with $n \ge 2$, and let *z* be a nonzero complex number. Then,

- *A. $z^{\frac{1}{n}}$ has *n* distinct values.
 - B. $z^{\frac{1}{n}}$ is single-valued.
 - C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}} = 1.$
 - D. A and \boldsymbol{C}
 - E. B and C

Question 4 The real-valued hyperbolic functions $\cosh(x)$ and $\sinh(x)$ are not periodic but satisfy the hyperbolic identity $\cosh^{2}(x) - \sinh^{2}(x) = 1$. When extended to the complex numbers, $\cosh(z)$ and $\sinh(z)$

A. satisfy the hyperbolic identity $\cosh^2(z) - \sinh^2(z) = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

B. are still not periodic.

C. are periodic.

D. A and B

*E. A and C