Math 120A August 12, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Let $f(z) = e^z$ and $g(z) = z^{\frac{1}{4}}$. A. f(z) is single-valued, but g(z) is multiple-valued. B. $f\left(\frac{1}{4}\right) = g(e)$ since they are both equal to $e^{\frac{1}{4}}$. C. $g(e) = \left\{e^{\frac{1}{4}+i\frac{\pi}{2}k}, k = 0, 1, 2, 3\right\}$. D. B and C *E. A and C

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question 2 A function f(x, y) = (u(x, y), v(x, y)) is complex differentiable at $z_0 = (x_0, y_0)$ if and only if

A.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x_0, y_0) .
B. $\frac{\partial}{\partial x} (u + iv) = \frac{1}{i} \frac{\partial}{\partial y} (u + iv)$ at (x_0, y_0) .
C. $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z}$ converges.
D. **A** and **C**.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

*E. **A**, **B**, and **C**.

Note: **B** follows from **A**.

Question 3 The power function z^{α} is single-valued

- A. for every real number α .
- B. for every rational number α .
- *C. for every integer α .
 - D. All of the above; after all, every rational number is a real number and every integer is a rational number.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

E. None of the above; z^{α} is always multiple-valued.