Math 120A August 13, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 A function f(x, y) = (u(x, y), v(x, y)) is complex differentiable at $z_0 = (x_0, y_0)$ if and only if

A.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (x_0, y_0) .
B. $\frac{\partial}{\partial x} (u + iv) = \frac{1}{i} \frac{\partial}{\partial y} (u + iv)$ at (x_0, y_0) .
C. $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z}$ converges.
D. **A** and **C**.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

*E. **A**, **B**, and **C**.

Question 2 Let *n* be a positive integer with $n \ge 2$, and let *z* be a nonzero complex number. Then,

- *A. $z^{\frac{1}{n}}$ has *n* distinct values.
 - B. $z^{\frac{1}{n}}$ is single-valued.
 - C. $z^{\frac{1}{n}} \cdot z^{-\frac{1}{n}} = 1.$
 - D. A and \boldsymbol{C}
 - E. B and C

Question 3 Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (u(x, y), v(x, y)). Suppose f has continuous partial derivatives. Then,

A. f is differentiable.

B. Viewing f as f(x + iy) = u(x + iy) + iv(x + iy), f is complex differentiable.

C.
$$Df = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$
 is the derivative of f .

D. All of the above.

*E. A and C

Question 4
$$f : \mathbb{R}^2 \to \mathbb{R}^2$$
 has derivative $Df = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.
We can conclude that

- A. *f* is complex differentiable because the partial derivatives of *f* satisfy the Cauchy-Riemann equations.
- B. f is differentiable but not complex differentiable because f'(z) cannot be written as a matrix.
- C. f is complex differentiable and $|f'(z)|^2 = \det(Df) = 2$.
- *D. **A** and **C**
 - E. We can't conclude anything. Not enough information has been provided.