Math 120A
August 14, 2019

Question $1 f(z)=\frac{a z+b}{c z+d}$ is a fractional linear transformation.
We can conclude that f is defined at every point on
A. the complex plane \mathbb{C}.
B. the extended complex plane \mathbb{C}^{*}.
C. the Riemann sphere via stereographic projection.
D. A and B
*E. B and C

Question 2 Let $f(z)=\frac{z+i}{z-i}$. Then,
A. $f(0)=-1$.
B. $f(1)=i$.
C. $f(\infty)=1$.
*D. All of the above.
E. A and B. $f(\infty)$ is not defined because ∞ is not a complex number.

Question 3 Let $f(z)=e^{z}$ and $g(z)=z^{\frac{1}{4}}$.
A. $f(z)$ is single-valued, but $g(z)$ is multiple-valued.
B. $f\left(\frac{1}{4}\right)=g(e)$ since they are both equal to $e^{\frac{1}{4}}$.
C. $g(e)=\left\{e^{\frac{1}{4}+i \frac{\pi}{2} k}, k=0,1,2,3\right\}$.
D. B and C
*E. A and C

Question $4 f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has derivative $\mathrm{Df}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$.
We can conclude that
A. f is complex differentiable because the partial derivatives of f satisfy the Cauchy-Riemann equations.
B. f is differentiable but not complex differentiable because $f^{\prime}(z)$ cannot be written as a matrix.
C. f is complex differentiable and $\left|f^{\prime}(z)\right|^{2}=\operatorname{det}(D f)=2$.
*D. A and C
E. We can't conclude anything. Not enough information has been provided.

Question 5 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(u(x, y), v(x, y))$. Suppose f has continuous partial derivatives. Then,
A. f is differentiable.
B. $\mathrm{Df}=\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)$ is the derivative of f.
C. Viewing f as $f(x+i y)=u(x+i y)+i v(x+i y), f$ is complex differentiable.
D. All of the above.
*E. A and B

