Math 120A
August 19, 2019

Question 1 Recall that the differential $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$ has the following two properties:

$$
\text { 1. } \frac{\partial}{\partial y}\left(-\frac{y}{x^{2}+y^{2}}\right)=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \text {. }
$$

2. $\oint_{x^{2}+y^{2}=1}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y=2 \pi$.

Therefore, we can conclude that $-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
*A. is closed.
B. is exact.
C. is both closed and exact.
D. is neither closed nor exact.
E. violates Green's theorem.

Question 2 Consider the functions $u(x, y)=y^{2}-x^{2}$ and $v(x, y)=-2 x y$. We can conclude
A. $u(x, y)$ and $v(x, y)$ are harmonic.
B. $u(x, y)$ and $v(x, y)$ are harmonic conjugates.
C. $f(x, y)=u(x, y)+i v(x, y)$ is analytic.
D. A and B.
*E. All of the above.

Question 3 Define $\log _{k}(z):=\log (z)+i 2 \pi k$. Then,
A. $\log ^{\prime}(z)=\frac{1}{z}$.
B. $\log _{k}^{\prime}(z)=\frac{1}{z}$ for every integer k.
C. A and B.
*D. all of the above, provided $z \in \mathbb{C} \backslash(-\infty, 0]$.
E. none of the above.

