Math 120A August 20, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 A primitive of a continuous function $f: \mathbb{C} \to \mathbb{C}$ is

- A. an antiderivative of f.
- B. a function $F : \mathbb{C} \to \mathbb{C}$ such that F'(z) = f(z).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- C. an exact differential of f.
- *D. both **A** and **B**.
 - E. all of the above.

Question 2 A continuous path $\gamma : [a, b] \rightarrow \mathbb{C}$ is simple if

A.
$$\gamma(b) = \gamma(a)$$
.

- B. $\gamma(t_1) \neq \gamma(t_2)$ whenever $t_1 \neq t_2$.
- C. the image curve $\gamma([a, b])$ has no self-intersections.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- *D. **B** and **C**.
 - E. all of the above.

Question 3 A continuous path $\gamma : [a, b] \to \mathbb{C}$ is closed if

*A.
$$\gamma(b) = \gamma(a)$$
.

- B. $\gamma(t_1) \neq \gamma(t_2)$ whenever $t_1 \neq t_2$.
- C. the image curve $\gamma([a, b])$ has no self-intersections.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- D. **B** and **C**.
- E. all of the above.

Question 4 Let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise smooth path with length *L*. We can conclude

(ロ)、(型)、(E)、(E)、 E) の(()

A.
$$\left| \int_{\gamma} dz \right| \leq L.$$

B. $\int_{\gamma} |dz| = L.$
C. $\int_{a}^{b} |\gamma'(t)| dt = L.$

- D. **B** and **C**; they are the same.
- *E. all of the above.

Question 5 Recall that Log(z) is the principle branch of the logarithm and that $\operatorname{Log}'(z)=rac{1}{z}$ at all points $z\in\mathbb{C}$ where this makes sense. Thus, A. Log(z) is an antiderivative for $\frac{1}{z}$ on the slit plane $\mathbb{C} \setminus (-\infty, 0].$ B. Log(z) is a primitive for $\frac{1}{z}$ on the slit plane $\mathbb{C} \setminus (-\infty, 0]$. C. Log(z) is a primitive for $\frac{1}{z}$ on the punctured plane $\mathbb{C} \setminus \{0\}$ since neither Log(z) nor $\frac{1}{z}$ are defined at 0.

- *D. A and B; they are the same.
 - E. none of the above; slitting or puncturing planes is vandalism and is not allowed.