Math 120A
August 20, 2019

Question 1 A primitive of a continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$ is
A. an antiderivative of f.
B. a function $F: \mathbb{C} \rightarrow \mathbb{C}$ such that $F^{\prime}(z)=f(z)$.
C. an exact differential of f.
*D. both \mathbf{A} and \mathbf{B}.
E. all of the above.

Question 2 A continuous path $\gamma:[a, b] \rightarrow \mathbb{C}$ is simple if A. $\gamma(b)=\gamma(a)$.
B. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$.
C. the image curve $\gamma([a, b])$ has no self-intersections.
*D. B and C.
E. all of the above.

Question 3 A continuous path $\gamma:[a, b] \rightarrow \mathbb{C}$ is closed if
*A. $\gamma(b)=\gamma(a)$.
B. $\gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$ whenever $t_{1} \neq t_{2}$.
C. the image curve $\gamma([a, b])$ has no self-intersections.
D. B and C.
E. all of the above.

Question 4 Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth path with length L. We can conclude
A. $\left|\int_{\gamma} d z\right| \leq L$.
B. $\int_{\gamma}|d z|=L$.
C. $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t=L$.
D. B and \mathbf{C}; they are the same.
*E. all of the above.

Question 5 Recall that $\log (z)$ is the principle branch of the logarithm and that $\log ^{\prime}(z)=\frac{1}{z}$ at all points $z \in \mathbb{C}$ where this makes sense. Thus,
A. $\log (z)$ is an antiderivative for $\frac{1}{z}$ on the slit plane $\mathbb{C} \backslash(-\infty, 0]$.
B. $\log (z)$ is a primitive for $\frac{1}{z}$ on the slit plane $\mathbb{C} \backslash(-\infty, 0]$.
C. $\log (z)$ is a primitive for $\frac{1}{z}$ on the punctured plane $\mathbb{C} \backslash\{0\}$ since neither $\log (z)$ nor $\frac{1}{z}$ are defined at 0 .
*D. A and \mathbf{B}; they are the same.
E. none of the above; slitting or puncturing planes is vandalism and is not allowed.

