Math 120A August 22, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 The functions $f_k : [0,1] \to \mathbb{R}$ given by $f_k(x) = x^k$

A. are all continous.

- B. converge pointwise to a discontinuous function.
- C. converge uniformly to a discontinous function.
- *D. **A** and **B**.
 - E. all of the above; if they converge uniformly, they also converge pointwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question 2 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z-3} dz$

*A. is equal to 0 by Cauchy's theorem.

B. is equal to 3^n by the Cauchy integral theorem.

C. is equal to $2\pi i 3^n$ by the Cauchy integral theorem.

D. is undefined because
$$\frac{z^n}{z-3}$$
 is undefined at $z = 3$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

E. none of the above.

Question 3 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z-1} dz$

A. is equal to 0 by Cauchy's theorem.

B. is equal to 1 by the Cauchy integral theorem.

*C. is equal to $2\pi i$ by the Cauchy integral theorem.

D. is undefined because
$$\frac{z^n}{z-1}$$
 is undefined at $z = 1$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

E. none of the above.

Question 4 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z+2} dz$

- A. is equal to 0 by Cauchy's theorem.
- B. is equal to $(-2)^n$ by the Cauchy integral theorem.
- C. is equal to $2\pi i (-2)^2$ by the Cauchy integral theorem.

*D. is undefined because
$$\frac{z^n}{z+2}$$
 is undefined at $z = -2$.

E. none of the above.

Question 5 A set $D \subset \mathbb{C}$ is a *domain* if

- A. for every $z \in D$ there is $\epsilon > 0$ so that $\{w \in \mathbb{C} \mid |w z| < \epsilon\} \subset D$.
- B. any two points in *D* can be connected by a continuous path consisting of a finite number of line segments.
- C. for every pair of points $z_1, z_2 \in D$, the line segment joining them is contained in D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- *D. **A** and **B**.
 - E. all of the above.