Math 120A August 26, 2019

Question 1 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence $R = +\infty$. We can conclude

- A. f(z) converges for all $z \in \mathbb{C}$.
- B. f(z) converges for all z with $|z z_0| < R$.
- C. f(z) converges for all z with |z| < R.
- *D. all of the above since every positive real number is less than $+\infty$.
 - E. none of the above since $+\infty$ is not a real number and cannot be a radius of convergence.

Question 2 Suppose $\sum_{k=0}^{3} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{3} a_k z^k$

- A. converges absolutely for every z with $|z| < |z_0|$.
- B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.
- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 3 Given a power series $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ with radius of convergence R = 0. We can conclude

- A. f(z) converges only when $z = z_0$.
- B. f(z) converges for all z with $|z z_0| \le R$.
- C. f(z) converges for all z with $|z z_0| < R$.
- *D. **A** and **B**; they are the same.
 - E. none of the above since a radius must be positive.

Question 4 The functions $f_k:[0,1]\to\mathbb{R}$ given by $f_k(x)=x^k$

- A. are all continous.
- B. converge pointwise to a discontinuous function.
- C. converge uniformly to a discontinous function.
- *D. **A** and **B**.
 - E. all of the above; if they converge uniformly, they also converge pointwise.

Question 5 A set $D \subset \mathbb{C}$ is a *domain* if

- A. for every $z \in D$ there is $\epsilon > 0$ so that $\{ w \in \mathbb{C} \mid |w z| < \epsilon \} \subset D$.
- B. any two points in D can be connected by a continuous path consisting of a finite number of line segments.
- C. for every pair of points $z_1, z_2 \in D$, the line segment joining them is contained in D.
- *D. **A** and **B**.
 - E. all of the above.