Math 120A
August 27, 2019

Question 1 Let $f(z)=\frac{1}{1+z^{2}}$.
A. $f(z)=\sum_{k=0}^{\infty}(-1)^{k} z^{2 k}$ is the power series for f centered at 0 and converges for $|z|<1$.
B. $f(z)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{z^{2 k}}$ is the power series for f centered at ∞ and converges for $|z|>1$.
C. $f(z)$ has a zero at ∞.
D. A and \mathbf{C}.
*E. All of the above.

Question 2 Suppose $\sum_{k=0}^{\infty} a_{k}(z-(1+i))^{2}$ is the power series for $f(z)=\frac{1}{1+z^{2}}$ centered at $1+i$. It's radius of convergence is
*A. 1 .
B. $\sqrt{5}$.
C. $R=\infty$ since $f(z)$ is defined for all z.
D. $R=0$ since the power series converges only at $1+i$.
E. None of the above.

Question 3 Suppose $\sum_{k=0}^{\infty} a_{k} z_{0}^{k}$ converges. We conclude that $\sum_{k=0}^{\infty} a_{k} z^{k}$
A. converges absolutely for every z with $|z|<\left|z_{0}\right|$.
B. converges uniformly for every z with $|z| \leq r$ whenever $r<\left|z_{0}\right|$.
C. converges absolutely for every z with $|z|=\left|z_{0}\right|$.
*D. A and B.
E. all of the above.

Question 4 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z-1} d z$
A. is equal to 0 by Cauchy's theorem.
B. is equal to 1 by the Cauchy integral theorem.
${ }^{*} \mathrm{C}$. is equal to $2 \pi i$ by the Cauchy integral theorem.
D. is undefined because $\frac{z^{n}}{z-1}$ is undefined at $z=1$.
E. none of the above.

Question 5 Let γ be the curve $|z|=2$ with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^{n}}{z+2} d z$
A. is equal to 0 by Cauchy's theorem.
B. is equal to $(-2)^{n}$ by the Cauchy integral theorem.
C. is equal to $2 \pi i(-2)^{2}$ by the Cauchy integral theorem.
*D. is undefined because $\frac{z^{n}}{z+2}$ is undefined at $z=-2$.
E. none of the above.

