Math 120A August 27, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 Let $f(z) = \frac{1}{1+z^2}$.

A. $f(z) = \sum_{k=0}^{\infty} (-1)^k z^{2k}$ is the power series for f centered at 0 and converges for |z| < 1.

B.
$$f(z) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{z^{2k}}$$
 is the power series for f centered at ∞ and converges for $|z| > 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

C.
$$f(z)$$
 has a zero at ∞ .

- D. **A** and **C**.
- *E. All of the above.

Question 2 Suppose $\sum_{k=0}^{\infty} a_k (z - (1 + i))^2$ is the power series for $f(z) = \frac{1}{1 + z^2}$ centered at 1 + i. It's radius of convergence is *A. 1. B. $\sqrt{5}$. C. $R = \infty$ since f(z) is defined for all z. D. R = 0 since the power series converges only at 1 + i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E. None of the above.

Question 3 Suppose $\sum_{k=0}^{\infty} a_k z_0^k$ converges. We conclude that $\sum_{k=0}^{\infty} a_k z^k$

A. converges absolutely for every z with $|z| < |z_0|$.

B. converges uniformly for every z with $|z| \le r$ whenever $r < |z_0|$.

- C. converges absolutely for every z with $|z| = |z_0|$.
- *D. **A** and **B**.
 - E. all of the above.

Question 4 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z-1} dz$

A. is equal to 0 by Cauchy's theorem.

B. is equal to 1 by the Cauchy integral theorem.

*C. is equal to $2\pi i$ by the Cauchy integral theorem.

D. is undefined because
$$\frac{z^n}{z-1}$$
 is undefined at $z = 1$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

E. none of the above.

Question 5 Let γ be the curve |z| = 2 with positive (counterclockwise) orientation. Then the integral $\int_{\gamma} \frac{z^n}{z+2} dz$

- A. is equal to 0 by Cauchy's theorem.
- B. is equal to $(-2)^n$ by the Cauchy integral theorem.
- C. is equal to $2\pi i (-2)^2$ by the Cauchy integral theorem.

*D. is undefined because
$$\frac{z^n}{z+2}$$
 is undefined at $z = -2$.

E. none of the above.