Math 120A August 28, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question 1 The function $f(z) = \frac{1}{z^2 - z} = -\frac{1}{z} \cdot \frac{1}{1 - z}$ can be decomposed as

A. $f(z) = f_0(z) + f_1(z)$ with $f_0(z)$ analytic for |z| < 1 and $f_1(z)$ analytic for |z| > 0 and vanishes at ∞ .

B.
$$f(z) = -\frac{1}{z} - \sum_{k=0}^{\infty} z^k$$
.

C. **A** and **B**;
$$f_0(z) = -\sum_{k=0}^{\infty} z^k$$
 and $f_1(z) = -\frac{1}{z}$.

- *D. All of the above; this is an example of a Laurent decomposition analytic for 0 < |z| < 1.
 - E. None of the above. I don't even know who Laurent was ...

Question 2 We can also write $f(z) = \frac{1}{z^2 - z} = \frac{1}{z^2} \cdot \frac{1}{1 - (\frac{1}{z})}$. Thus,

A.
$$f(z) = \sum_{k=2}^{\infty} \frac{1}{z^k}$$
 for $|z| > 1$.

B. $f(z) = f_0(z) + f_1(z)$, where $f_0(z)$ is analytic for $|z| < +\infty$ and $f_1(z)$ is analytic for |z| > 1 and vanishes at ∞ .

C. A and B and $f_0(z)$ is identically zero.

- *D. All of the above; this is an example of a Laurent decomposition analytic for |z| > 1.
 - E. None of the above. Did Laurent ever meet Cauchy?

A D N A 目 N A E N A E N A B N A C N

Question 3 Let *A* be the annulus $\rho < |z - z_0| < \sigma$ with boundary $\partial A = \{|z - z_0| = \sigma\} \cup \{|z - z_0| = \rho\}$. If f(z) is analytic on *A* and extends smoothly to ∂A , then for all $z \in A$:

A.
$$f(z) = \frac{1}{2\pi i} \int_{\partial A} \frac{f(\zeta)}{\zeta - z} d\zeta$$
, traversing ∂A along its positive orientation.

B. The positive orientation of ∂A is *counterclockwise* along the outer circle $\{|z - z_0| = \sigma\}$ and *clockwise* along the inner circle $\{|z - z_0| = \rho\}$

C.
$$f(z) = \frac{1}{2\pi i} \int_{|z-z_0|=\sigma} \frac{f(\zeta)}{\zeta-z} d\zeta - \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(\zeta)}{\zeta-z} d\zeta,$$

traversing both circles in counterclockwise orientation.

- *D. All of the above; the result is called Cauchy's integral formula for an annulus.
 - E. None of the above; not much can be done on an annulus.

Question 4 The function $f(z) = \frac{1}{z} + \frac{1}{z^5} = \frac{z^4 + 1}{z^5}$. We can conclude A. f(z) has four simple zeros: $z \in \left\{e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}\right\}$. B. f(z) has a zero of order 5 at ∞ . C. $\frac{1}{z} + \frac{1}{z^5}$ is the Laurent series of f for |z| > 0. D. A and B. *E. A and C.

Question 5 Suppose $\sum_{k=0}^{\infty} a_k (z - (1 + i))^2$ is the power series for $f(z) = \frac{1}{1 + z^2}$ centered at 1 + i. It's radius of convergence is *A. 1. B. $\sqrt{5}$. C. $R = \infty$ since f(z) is defined for all z. D. R = 0 since the power series converges only at 1 + i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

E. None of the above.