Math 120A
August 28, 2019

Question 1 The function $f(z)=\frac{1}{z^{2}-z}=-\frac{1}{z} \cdot \frac{1}{1-z}$ can be decomposed as
A. $f(z)=f_{0}(z)+f_{1}(z)$ with $f_{0}(z)$ analytic for $|z|<1$ and $f_{1}(z)$ analytic for $|z|>0$ and vanishes at $\infty$.
B. $f(z)=-\frac{1}{z}-\sum_{k=0}^{\infty} z^{k}$.
C. $\mathbf{A}$ and $\mathbf{B} ; f_{0}(z)=-\sum_{k=0}^{\infty} z^{k}$ and $f_{1}(z)=-\frac{1}{z}$.
*D. All of the above; this is an example of a Laurent decomposition analytic for $0<|z|<1$.
E. None of the above. I don't even know who Laurent was ...

Question 2 We can also write $f(z)=\frac{1}{z^{2}-z}=\frac{1}{z^{2}} \cdot \frac{1}{1-\left(\frac{1}{z}\right)}$. Thus,
A. $f(z)=\sum_{k=2}^{\infty} \frac{1}{z^{k}}$ for $|z|>1$.
B. $f(z)=f_{0}(z)+f_{1}(z)$, where $f_{0}(z)$ is analytic for $|z|<+\infty$ and $f_{1}(z)$ is analytic for $|z|>1$ and vanishes at $\infty$.
C. A and $\mathbf{B}$ and $f_{0}(z)$ is identically zero.
*D. All of the above; this is an example of a Laurent decomposition analytic for $|z|>1$.
E. None of the above. Did Laurent ever meet Cauchy?

Question 3 Let $A$ be the annulus $\rho<\left|z-z_{0}\right|<\sigma$ with boundary $\partial A=\left\{\left|z-z_{0}\right|=\sigma\right\} \cup\left\{\left|z-z_{0}\right|=\rho\right\}$. If $f(z)$ is analytic on $A$ and extends smoothly to $\partial A$, then for all $z \in A$ :
A. $f(z)=\frac{1}{2 \pi i} \int_{\partial A} \frac{f(\zeta)}{\zeta-z} d \zeta$, traversing $\partial A$ along its positive orientation.
B. The positive orientation of $\partial A$ is counterclockwise along the outer circle $\left\{\left|z-z_{0}\right|=\sigma\right\}$ and clockwise along the inner circle $\left\{\left|z-z_{0}\right|=\rho\right\}$
C. $f(z)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\sigma} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\rho} \frac{f(\zeta)}{\zeta-z} d \zeta$,
traversing both circles in counterclockwise orientation.
*D. All of the above; the result is called Cauchy's integral formula for an annulus.
E. None of the above; not much can be done on an annulus.

Question 4 The function $f(z)=\frac{1}{z}+\frac{1}{z^{5}}=\frac{z^{4}+1}{z^{5}}$. We can conclude
A. $f(z)$ has four simple zeros: $z \in\left\{e^{i \frac{\pi}{4}}, e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}\right\}$.
B. $f(z)$ has a zero of order 5 at $\infty$.
C. $\frac{1}{z}+\frac{1}{z^{5}}$ is the Laurent series of $f$ for $|z|>0$.
D. A and B.
*E. A and C.

Question 5 Suppose $\sum_{k=0}^{\infty} a_{k}(z-(1+i))^{2}$ is the power series for $f(z)=\frac{1}{1+z^{2}}$ centered at $1+i$. It's radius of convergence is
*A. 1 .
B. $\sqrt{5}$.
C. $R=\infty$ since $f(z)$ is defined for all $z$.
D. $R=0$ since the power series converges only at $1+i$.
E. None of the above.

