Instructions

1. You may use any type of calculator, but no other electronic devices during this exam.

- Express numbers symbolically (for example, $\sqrt{2}$ rather than 2.1).

2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
5. Read each question carefully, and answer each question completely.
6. Show all of your work; no credit will be given for unsupported answers.
7. (6 points) Compute $\sin ^{-1}\left(-\frac{5}{4}\right)$ using the principal branch of the logarithm and the branch $\sqrt{r} e^{i \frac{\theta}{2}}$ with $0<\theta<2 \pi$ of the square root. Use the formula $\sin ^{-1}(z)=-i \log \left[i z+\sqrt{1-z^{2}}\right]$.
8. (6 points) Consider the function $f(z)=\sin (\bar{z})$.
(a) At what point (s) is $f(z)$ differentiable?
(b) At what point(s) is $f(z)$ analytic?
9. (6 points) Evaluate $\oint_{C} \frac{2 z}{z^{2}+1} d z$, where C is the circle $|z|=2$. You may use the fact that $\frac{2 z}{z^{2}+1}=\frac{1}{z-i}+\frac{1}{z+i}$.
10. (6 points) Determine an upper bound for $\left|\oint_{C} \frac{z^{3}}{\left(z^{2}+4\right)^{2}} d z\right|$, where C is the circle $|z|=3$.
11. (6 points) Find the radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{i}{i+1}\right) \frac{z^{k}}{3^{k}}$.
