1. Let L be a linear operator on \mathbb{R}^{n} with the property that $L(\mathbf{x})=\mathbf{0}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$. Let $A=[L]_{\mathcal{E}}$ be the matrix representing L with respect to the standard basis $\mathcal{E}=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{R}^{n}. Show that A is singular.
2. Let L be a linear operaton on a vector space V. Let $A=[L]_{\mathcal{B}}$ be the matrix representing L with respect to a basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V. Show that A^{m} is the matrix representing L^{m} with respect to \mathcal{B}; that is, show that $\left[L^{m}\right]_{\mathcal{B}}=\left([L]_{\mathcal{B}}\right)^{m}$.
3. Suppose $A=S \Lambda S^{-1}$, where Λ is a diagonal matrix with diagonal elements $\lambda_{1}, \ldots, \lambda_{n}$. Write $S=\left[\begin{array}{lll}\mathbf{s}_{1} & \cdots & \mathbf{s}_{n}\end{array}\right]$; that is, \mathbf{s}_{i} is the $i^{\text {th }}$ column of S.
(a) Show that $A \mathbf{s}_{i}=\lambda_{i} \mathbf{s}_{i}$ for $i=1, \ldots, n$.
(b) Show that if $\mathbf{x}=\alpha_{1} \mathbf{s}_{1}+\alpha_{2} \mathbf{s}_{2}+\cdots+\alpha_{n} \mathbf{s}_{n}$, then $A^{k} \mathbf{x}=\alpha_{1} \lambda_{1}^{k} \mathbf{s}_{1}+\alpha_{2} \lambda_{2}^{k} \mathbf{s}_{2}+\cdots+\alpha_{n} \lambda_{n}^{k} \mathbf{s}_{n}$.
(c) Suppose $\left|\lambda_{i}\right|<1$ for $i=1, \ldots, n$. What happens to $A^{k} \mathbf{x}$ as $k \rightarrow \infty$? Explain.
4. Let A and B be similar matrices.
(a) Show that A^{T} and B^{T} are similar.
(b) Show that A^{k} and B^{k} are similar for every positive integer k.
5. A linear transformation $L: V \rightarrow W$ is said to be one-to-one if $L\left(\mathbf{v}_{1}\right)=L\left(\mathbf{v}_{2}\right)$ implies $\mathbf{v}_{1}=\mathbf{v}_{2}$.
(a) Show that if $\operatorname{ker}(L)=\left\{\mathbf{0}_{V}\right\}$, then L is one-to-one.
(b) Show that if L is one-to-one, then $\operatorname{ker}(L)=\left\{\mathbf{0}_{V}\right\}$.
6. Let V be the subspace of $C[a, b]$ spanned by $\left\{1, e^{x}, e^{-x}\right\}$, and let D be the differentiation operator on V.
(a) Find the transition matrix P representing the change of coordinates from the ordered basis $E=\left\{1, e^{x}, e^{-x}\right\}$ to the ordered basis $H=\{1, \sinh (x), \cosh (x)\}$.
(b) Find the matrix $A=[D]_{H}$ representing D with respect to the basis H.
(c) Find the matrix $B=[D]_{E}$ representing D with respect to the basis E.
(d) Verify that $B=P^{-1} A P$.
