- 1. Let *L* be a linear operator on \mathbb{R}^n with the property that $L(\mathbf{x}) = \mathbf{0}$ for some nonzero vector $\mathbf{x} \in \mathbb{R}^n$. Let $A = [L]_{\mathcal{E}}$ be the matrix representing *L* with respect to the standard basis $\mathcal{E} = \{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ of \mathbb{R}^n . Show that *A* is singular.
- 2. Let *L* be a linear operaton on a vector space *V*. Let $A = [L]_{\mathcal{B}}$ be the matrix representing *L* with respect to a basis $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of *V*. Show that A^m is the matrix representing L^m with respect to \mathcal{B} ; that is, show that $[L^m]_{\mathcal{B}} = ([L]_{\mathcal{B}})^m$.
- 3. Suppose $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix with diagonal elements $\lambda_1, \ldots, \lambda_n$. Write $S = \begin{bmatrix} \mathbf{s}_1 & \cdots & \mathbf{s}_n \end{bmatrix}$; that is, \mathbf{s}_i is the *i*th column of *S*.
 - (a) Show that $A\mathbf{s}_i = \lambda_i \mathbf{s}_i$ for $i = 1, \dots, n$.
 - (b) Show that if $\mathbf{x} = \alpha_1 \mathbf{s}_1 + \alpha_2 \mathbf{s}_2 + \dots + \alpha_n \mathbf{s}_n$, then $A^k \mathbf{x} = \alpha_1 \lambda_1^k \mathbf{s}_1 + \alpha_2 \lambda_2^k \mathbf{s}_2 + \dots + \alpha_n \lambda_n^k \mathbf{s}_n$.
 - (c) Suppose $|\lambda_i| < 1$ for i = 1, ..., n. What happens to $A^k \mathbf{x}$ as $k \to \infty$? Explain.
- 4. Let A and B be similar matrices.
 - (a) Show that A^T and B^T are similar.
 - (b) Show that A^k and B^k are similar for every positive integer k.
- 5. A linear transformation $L: V \to W$ is said to be *one-to-one* if $L(\mathbf{v}_1) = L(\mathbf{v}_2)$ implies $\mathbf{v}_1 = \mathbf{v}_2$.
 - (a) Show that if $\ker(L) = \{\mathbf{0}_V\}$, then L is one-to-one.
 - (b) Show that if L is one-to-one, then $\ker(L) = \{\mathbf{0}_V\}.$
- 6. Let V be the subspace of C[a, b] spanned by $\{1, e^x, e^{-x}\}$, and let D be the differentiation operator on V.
 - (a) Find the transition matrix P representing the change of coordinates from the ordered basis $E = \{1, e^x, e^{-x}\}$ to the ordered basis $H = \{1, \sinh(x), \cosh(x)\}$.
 - (b) Find the matrix $A = [D]_H$ representing D with respect to the basis H.
 - (c) Find the matrix $B = [D]_E$ representing D with respect to the basis E.
 - (d) Verify that $B = P^{-1} A P$.