Math 102 Homework Assignment 3 Due Thursday, February 3, 2022

- 1. Let A be a $m \times n$ matrix. Show that:
 - (a) If $\mathbf{x} \in N(A^T A)$, then $A\mathbf{x} \in R(A) \cap N(A^T)$.
 - (b) $N(A^T A) = N(A)$.
- 2. Let V and W be subspaces of \mathbb{R}^n such that $V \subset W$. Show that $W^{\perp} \subset V^{\perp}$.
- 3. Suppose A is a symmetric $n \times n$ matrix. Let V be a subspace of \mathbb{R}^n with the property that $A\mathbf{x} \in V$ for every $\mathbf{x} \in V$. Show that $A\mathbf{y} \in V^{\perp}$ for every $\mathbf{y} \in V^{\perp}$. (Remark: The subspace V is said to be invariant under A. This exercise shows that if V is an invariant subspace under A, then so is V^{\perp} .)

4. Let
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 3 \\ 8 \\ 2 \end{pmatrix}$.

- (a) Find the orthogonal projection of **b** onto R(A).
- (b) Describe all least squares solutions to $A\mathbf{x} = \mathbf{b}$.
- 5. Let A be a $n \times n$ matrix. Given that $\begin{pmatrix} A & I \\ O & A^T \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}} \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{0} \end{pmatrix}$.

Show that $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$ and that \mathbf{r} is the residual vector.

- 6. Given a $m \times n$ matrix A. Let $\hat{\mathbf{x}}$ be a solution to the least squares problem $A\mathbf{x} = \mathbf{b}$. Show that a vector $\mathbf{y} \in \mathbf{R}^n$ will also be a least squares solution if an only if $\mathbf{y} = \hat{\mathbf{x}} + \mathbf{z}$ for some vector $\mathbf{z} \in N(A)$.
- 7. Let P_3 be the inner product space of polynomials of degree less than 3 with inner product $\langle p,q\rangle = \int_{-1}^{1} p(t)q(t) dt$. Let $g_1(t) = 1$ and $g_2(t) = t$. Find a basis for $\operatorname{Span}(g_1,g_2)^{\perp}$, the orthogonal complement of the subspace of P_3 spanned by g_1 and g_2 .
- 8. Let \mathbf{u} and \mathbf{v} be any two vectors in an inner product space V.
 - (a) Show that $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$.
 - (b) Show that if $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal.