1. Let $A=\left(\begin{array}{rr}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$.
(a) Find the projection matrix P that projects vectors in \mathbb{R}^{4} onto $R(A)$.
(b) Find an orthonormal basis for $N\left(A^{T}\right)$.
(c) Determine the projection matrix Q that projects vectors in \mathbb{R}^{4} onto $N\left(A^{T}\right)$.
2. Let A be a $m \times n$ matrix, let P be the projection matrix that projects vectors in \mathbb{R}^{m} onto $R(A)$, and let Q be the projection matrix that projects vectors in \mathbb{R}^{n} onto $R\left(A^{T}\right)$.
(a) Show that $I-P$ is the projection matrix from \mathbb{R}^{m} onto $N\left(A^{T}\right)$.
(b) Show that $I-Q$ is the projection matrix from \mathbb{R}^{n} onto $N(A)$.
3. Let \mathbf{v} be a vector in an inner product space V and let \mathbf{p} be the projection of \mathbf{v} onto an n-dimensional subspace S of V. Show that $\|\mathbf{p}\|^{2}=\langle\mathbf{p}, \mathbf{v}\rangle$.
4. Consider the inner product space $C[0,1]$ of continuous functions on $[0,1]$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Find an orthonormal basis for $\operatorname{Span}\left(1, x, x^{2}\right)$, the subspace of $C[0,1]$ spanned by $\left\{1, x, x^{2}\right\}$.
5. Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$ be an orthonormal basis for an inner product space V. Let $S_{1}=\operatorname{Span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$, the subspace of V spanned by $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ and $S_{2}=\operatorname{Span}\left(\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right)$, the subspace of V spanned by $\left\{\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$. Show that $S_{1} \perp S_{2}$.

6 . Let \mathbf{u} be a unit vector in \mathbb{R}^{n} and define $H=I-2 \mathbf{u u}^{T}$. Show that:
(a) H is symmetric.
(b) H is orthogonal.
(c) $H^{-1}=H$.
7. (a) Given two $n \times n$ orthogonal matrices Q_{1} and Q_{2}. Show that $Q_{1} Q_{2}$ is an orthogonal matrix.
(b) Given two $n \times n$ permutation matrices P_{1} and P_{2}. Is $P_{1} P_{2}$ a permutation matrix? Why or why not?
8. Let $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n}\end{array}\right]$ be an $n \times n$ orthogonal matrix.

Show that $\mathbf{u}_{1} \mathbf{u}_{1}^{T}+\mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\mathbf{u}_{n} \mathbf{u}_{n}^{T}=I$, the $n \times n$ identity matrix.

