1. Let
$$A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
.

- (a) Find the projection matrix P that projects vectors in \mathbb{R}^4 onto R(A).
- (b) Find an orthonormal basis for $N(A^T)$.
- (c) Determine the projection matrix Q that projects vectors in \mathbb{R}^4 onto $N(A^T)$.
- 2. Let A be a $m \times n$ matrix, let P be the projection matrix that projects vectors in \mathbb{R}^m onto R(A), and let Q be the projection matrix that projects vectors in \mathbb{R}^n onto $R(A^T)$.
 - (a) Show that I P is the projection matrix from \mathbb{R}^m onto $N(A^T)$.
 - (b) Show that I Q is the projection matrix from \mathbb{R}^n onto N(A).
- 3. Let **v** be a vector in an inner product space V and let **p** be the projection of **v** onto an *n*-dimensional subspace S of V. Show that $\|\mathbf{p}\|^2 = \langle \mathbf{p}, \mathbf{v} \rangle$.
- 4. Consider the inner product space C[0,1] of continuous functions on [0,1] with inner product

$$\langle f,g \rangle = \int_0^1 f(t)g(t) \, dt$$

Find an orthonormal basis for $\text{Span}(1, x, x^2)$, the subspace of C[0, 1] spanned by $\{1, x, x^2\}$.

- 5. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}$ be an orthonormal basis for an inner product space V. Let $S_1 = \text{Span}(\mathbf{x}_1, \dots, \mathbf{x}_k)$, the subspace of V spanned by $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ and $S_2 = \text{Span}(\mathbf{x}_{k+1}, \dots, \mathbf{x}_n)$, the subspace of V spanned by $\{\mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}$. Show that $S_1 \perp S_2$.
- 6. Let **u** be a unit vector in \mathbb{R}^n and define $H = I 2\mathbf{u}\mathbf{u}^T$. Show that:
 - (a) H is symmetric.
 - (b) H is orthogonal.
 - (c) $H^{-1} = H$.
- 7. (a) Given two $n \times n$ orthogonal matrices Q_1 and Q_2 . Show that $Q_1 Q_2$ is an orthogonal matrix.
 - (b) Given two $n \times n$ permutation matrices P_1 and P_2 . Is P_1P_2 a permutation matrix? Why or why not?
- 8. Let $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$ be an $n \times n$ orthogonal matrix. Show that $\mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T + \cdots + \mathbf{u}_n \mathbf{u}_n^T = I$, the $n \times n$ identity matrix.